Current Cardiology Reports

, Volume 4, Issue 6, pp 514–521 | Cite as

Insulin resistance, diabetes, and atherosclerosis: Thiazolidinediones as therapeutic interventions

  • Annaswamy Raji
  • Jorge Plutzky


The insulin resistance syndrome, a cluster of metabolic abnormalities involving dyslipidemia, hypertension, diabetes, impaired glucose tolerance, and hypercoagulability, carries an increased risk of atherosclerosis. Although interventions targeting elements of this syndrome have dramatically reduced cardiovascular risk, the impact of glucose-lowering has been more disappointing. Thiazolidinediones (TZDs) are a new class of insulin-sensitizing agents that activate the nuclear receptor peroxisome proliferators-activated receptor-γ. TZDs may improve not only glucose levels but also other metabolic parameters associated with insulin resistance. The TZD data are reviewed, with a focus on their potential cardiovascular effects.


Insulin Resistance Metformin Glycemic Control Rosiglitazone Pioglitazone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Parulkar AA, Pendergrass ML, Granda-Ayala R, et al.: Nonhypoglycemic effects of thiazolidinediones. Ann Intern Med 2001, 134:61–71. The nonhypoglycemic effects of TZDs have become a major area of interest. This review provides an excellent overview of both in vivo and in vitro evidence for such TZD action, which include decreases in cardiovascular risk among patients with the insulinresistance syndrome.PubMedGoogle Scholar
  2. 2.
    Reaven GM: Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988, 37:1595–1607.PubMedCrossRefGoogle Scholar
  3. 3.
    Deedwania PC: The deadly quartet revisited. Am J Med 1998, 105:1S-3S.PubMedCrossRefGoogle Scholar
  4. 4.
    Owen P, Evans M: Therapy and clinical trials: type 2 diabetes: lifestyle and beyond. Curr Opin Lipidol 2002, 13:351–353.PubMedCrossRefGoogle Scholar
  5. 5.
    Ridker PM, Cushman M, Stampfer MJ, et al.: Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men [published erratum appears in N Engl J Med 1997, 337:356]. N Engl J Med 1997, 336:973–979.PubMedCrossRefGoogle Scholar
  6. 6.
    The relationship of glycemic exposure (HbA1c) to the risk of development and progression of retinopathy in the diabetes control and complications trial. Diabetes 1995, 44:968–983.Google Scholar
  7. 7.
    Nathan DM: Prevention of long-term complications of noninsulin-dependent diabetes mellitus. Clin Invest Med 1995, 18:332–339.PubMedGoogle Scholar
  8. 8.
    Intensive blood-glucose control with sulfonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group [published erratum appears in Lancet 1999, 354:602]. Lancet 1998, 352:837–853.Google Scholar
  9. 9.
    Adler AI, Neil HA, Manley SE, et al.: Hyperglycemia and hyperinsulinemia at diagnosis of diabetes and their association with subsequent cardiovascular disease in the United Kingdom prospective diabetes study (UKPDS 47). Am Heart J 1999, 138:353–359.CrossRefGoogle Scholar
  10. 10.
    Haffner SM, Miettinen H: Insulin resistance implications for type II diabetes mellitus and coronary heart disease [see comments]. Am J Med 1997, 103:152–162.PubMedCrossRefGoogle Scholar
  11. 11.
    Strong JP, Malcom GT, McMahan CA, et al.: Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA 1999, 281:727–735.PubMedCrossRefGoogle Scholar
  12. 12.
    Tuzcu EM, Kapadia SR, Tutar E, et al.: High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults: evidence from intravascular ultrasound. Circulation 2001, 103:2705–2710.PubMedGoogle Scholar
  13. 13.
    McGill HC, Jr., McMahan CA, Zieske AW, et al.: Effects of nonlipid risk factors on atherosclerosis in youth with a favorable lipoprotein profile. Circulation 2001, 103:1546–1550.PubMedGoogle Scholar
  14. 14.
    Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. The DECODE study group. European Diabetes Epidemiology Group. Diabetes epidemiology: collaborative analysis of diagnostic criteria in Europe. Lancet 1999, 354:617–621.CrossRefGoogle Scholar
  15. 15.
    Balkau B: The DECODE study. Diabetes epidemiology: collaborative analysis of diagnostic criteria in Europe. Diabetes Metab 2000, 26:282–286.PubMedGoogle Scholar
  16. 16.
    Ginsberg H, Plutzky J, Sobel BE: A review of metabolic and cardiovascular effects of oral antidiabetic agents: beyond glucose-level lowering. J Cardiovasc Risk 1999, 6:337–346.PubMedGoogle Scholar
  17. 17.
    DeFronzo RA: Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med 1999, 131:281–303.PubMedGoogle Scholar
  18. 18.
    Inzucchi SE: Oral antihyperglycemic therapy for type 2 diabetes: scientific review. JAMA 2002, 287:360–372. A comprehensive overview of the literature regarding antidiabetic therapies, highlighting the efficacy of various oral antihyperglycemic agents used in the treatment of type 2 diabetes.PubMedCrossRefGoogle Scholar
  19. 19.
    Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group [published erratum appears in Lancet 1998, 352:1557]. Lancet 1998, 352:854–865.Google Scholar
  20. 20.
    Henry RR: Thiazolidinediones. Endocrinol Metab Clin North Am 1997, 26:553–573.PubMedCrossRefGoogle Scholar
  21. 21.
    Berger J, Moller DE: The mechanisms of action of PPARs. Annu Rev Med 2002, 53:409–435.PubMedCrossRefGoogle Scholar
  22. 22.
    Willson TM, Brown PJ, Sternbach DD, Henke BR: The PPARs: from orphan receptors to drug discovery. J Med Chem 2000, 43:527–550.PubMedCrossRefGoogle Scholar
  23. 23.
    Bergman RN: Troglitazone. Drugs 1997, 54:89–101, discussion 102.Google Scholar
  24. 24.
    Komers R, Vrana A: Thiazolidinediones--tools for the research of metabolic syndrome X. Physiol Res 1998, 47:215–225.PubMedGoogle Scholar
  25. 25.
    Berger J, Leibowitz MD, Doebber TW, et al.: Novel peroxisome proliferator-activated receptor (PPAR) gamma and PPARdelta ligands produce distinct biological effects. J Biol Chem 1999, 274:6718–6725.PubMedCrossRefGoogle Scholar
  26. 26.
    Schoonjans K, Martin G, Staels B, Auwerx J: Peroxisome proliferator-activated receptors, orphans with ligands and functions. Curr Opin Lipidol 1997, 8:159–166.PubMedCrossRefGoogle Scholar
  27. 27.
    Spiegelman BM: Peroxisome proliferator-activated receptor gamma: A key regulator of adipogenesis and systemic insulin sensitivity. Eur J Med Res 1997, 2:457–464.PubMedGoogle Scholar
  28. 28.
    Bahr M, Spelleken M, Bock M, et al.: Acute and chronic effects of troglitazone (CS-045) on isolated rat ventricular cardiomyocytes. Diabetologia 1996, 39:766–774.PubMedCrossRefGoogle Scholar
  29. 29.
    Ciaraldi TP, Huber Knudsen K, Hickman M, Olefsky JM: Regulation of glucose transport in cultured muscle cells by novel hypoglycemic agents. Metabolism 1995, 44:976–981.PubMedCrossRefGoogle Scholar
  30. 30.
    De Vos P, Lefebvre AM, Miller SG, et al.: Thiazolidinediones repress ob gene expression in rodents via activation of peroxisome proliferator-activated receptor gamma. J Clin Invest 1996, 98:1004–1009.PubMedGoogle Scholar
  31. 31.
    Ohsumi J, Sakakibara S, Yamaguchi J, et al.: Troglitazone prevents the inhibitory effects of inflammatory cytokines on insulin-induced adipocyte differentiation in 3T3-L1 cells. Endocrinology 1994, 135:2279–2282.PubMedCrossRefGoogle Scholar
  32. 32.
    Szalkowski D, White Carrington S, Berger J, Zhang B: Antidiabetic thiazolidinediones block the inhibitory effect of tumor necrosis factor-alpha on differentiation, insulin-stimulated glucose uptake, and gene expression in 3T3-L1 cells. Endocrinology 1995, 136:1474–1481.PubMedCrossRefGoogle Scholar
  33. 33.
    Day C: Thiazolidinediones: a new class of antidiabetic drugs. Diabet Med 1999, 16:179–192.PubMedCrossRefGoogle Scholar
  34. 34.
    Lehmann JM, Moore LB, Smith-Oliver TA, et al.: An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 1995, 270:12953–12956.PubMedCrossRefGoogle Scholar
  35. 35.
    Lambe KG, Tugwood JD: A human peroxisome-proliferator-activated receptor-gamma is activated by inducers of adipogenesis, including thiazolidinedione drugs. Eur J Biochem 1996, 239:1–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Spiecker M, Peng HB, Liao JK: Inhibition of endothelial vascular cell adhesion molecule-1 expression by nitric oxide involves the induction and nuclear translocation of Ikappa-Balpha. J Biol Chem 1997, 272:30969–30974.PubMedCrossRefGoogle Scholar
  37. 37.
    Spiegelman BM: PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 1998, 47:507–514.PubMedCrossRefGoogle Scholar
  38. 38.
    Forman BM, Tontonoz P, Chen J, et al.: 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 1995, 83:803–812.PubMedCrossRefGoogle Scholar
  39. 39.
    Matthaei S, Stumvoll M, Kellerer M, Haring HU: Pathophysiology and pharmacological treatment of insulin resistance. Endocr Rev 2000, 21:585–618.PubMedCrossRefGoogle Scholar
  40. 40.
    Burant CF, Sreenan S, Hirano K, et al.: Troglitazone action is independent of adipose tissue. J Clin Invest 1997, 100:2900–2908.PubMedGoogle Scholar
  41. 41.
    Randle PJ, Priestman DA, Mistry SC, Halsall A: Glucose fatty acid interactions and the regulation of glucose disposal. J Cell Biochem 1994, 55:1–11.PubMedCrossRefGoogle Scholar
  42. 42.
    Saloranta C, Groop L: Interactions between glucose and FFA metabolism in man. Diabetes Metab Rev 1996, 12:15–36.PubMedCrossRefGoogle Scholar
  43. 43.
    Ciaraldi TP, Abrams L, Nikoulina S, et al.: Glucose transport in cultured human skeletal muscle cells. Regulation by insulin and glucose in nondiabetic and non-insulindependent diabetes mellitus subjects. J Clin Invest 1995, 96:2820–2827.PubMedGoogle Scholar
  44. 44.
    Tafuri SR: Troglitazone enhances differentiation, basal glucose uptake, and Glut1 protein levels in 3T3-L1 adipocytes. Endocrinology 1996, 137:4706–4712.PubMedCrossRefGoogle Scholar
  45. 45.
    Ciaraldi TP, Gilmore A, Olefsky JM, et al.: In vitro studies on the action of CS-045, a new antidiabetic agent. Metabolism 1990, 39:1056–1062.PubMedCrossRefGoogle Scholar
  46. 46.
    Nolan JJ, Ludvik B, Beerdsen P, et al.: Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N Engl J Med 1994, 331:1188–1193.PubMedCrossRefGoogle Scholar
  47. 47.
    Kroder G, Bossenmaier B, Kellerer M, et al.: Tumor necrosis factor-alpha- and hyperglycemia-induced insulin resistance. Evidence for different mechanisms and different effects on insulin signaling. J Clin Invest 1996, 97:1471–1477.PubMedGoogle Scholar
  48. 48.
    Hofmann C, Lorenz K, Braithwaite SS, et al.: Altered gene expression for tumor necrosis factor-alpha and its receptors during drug and dietary modulation of insulin resistance. Endocrinology 1994, 134:264–270.PubMedCrossRefGoogle Scholar
  49. 49.
    Kallen CB, Lazar MA: Antidiabetic thiazolidinediones inhibit leptin (ob) gene expression in 3T3-L1 adipocytes. Proc Natl Acad Sci U S A 1996, 93:5793–5796.PubMedCrossRefGoogle Scholar
  50. 50.
    Keller JM, Collet P, Bianchi A, et al.: Implications of peroxisome proliferator-activated receptors (PPARS) in development, cell life status and disease. Int J Dev Biol 2000, 44:429–442.PubMedGoogle Scholar
  51. 51.
    Lee MK, Miles PD, Khoursheed M, et al.: Metabolic effects of troglitazone on fructose-induced insulin resistance in the rat. Diabetes 1994, 43:1435–1439.PubMedCrossRefGoogle Scholar
  52. 52.
    O’Rourke CM, Davis JA, Saltiel AR, Cornicelli JA: Metabolic effects of troglitazone in the Goto-Kakizaki rat, a nonobese and normolipidemic rodent model of non-insulindependent diabetes mellitus. Metabolism 1997, 46:192–198.PubMedCrossRefGoogle Scholar
  53. 53.
    Masuda K, Okamoto Y, Tsuura Y, et al.: Effects of Troglitazone (CS-045) on insulin secretion in isolated rat pancreatic islets and HIT cells: an insulinotropic mechanism distinct from glibenclamide. Diabetologia 1995, 38:24–30.PubMedGoogle Scholar
  54. 54.
    Suter SL, Nolan JJ, Wallace P, et al.: Metabolic effects of new oral hypoglycemic agent CS-045 in NIDDM subjects. Diabetes Care 1992, 15:193–203.PubMedCrossRefGoogle Scholar
  55. 55.
    Antonucci T, Whitcomb R, McLain R, et al.: Impaired glucose tolerance is normalized by treatment with the thiazolidine-dione troglitazone. Diabetes Care 1997, 20:188–193.PubMedCrossRefGoogle Scholar
  56. 56.
    Dunaif A, Scott D, Finegood D, et al.: The insulin-sensitizing agent troglitazone improves metabolic and reproductive abnormalities in the polycystic ovary syndrome. J Clin Endocrinol Metab 1996, 81:3299–3306.PubMedCrossRefGoogle Scholar
  57. 57.
    Maggs DG, Buchanan TA, Burant CF, et al.: Metabolic effects of troglitazone monotherapy in type 2 diabetes mellitus. A randomized, double-blind, placebo- controlled trial. Ann Intern Med 1998, 128:176–185.PubMedGoogle Scholar
  58. 58.
    Inzucchi SE, Maggs DG, Spollett GR, et al.: Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus [see comments]. N Engl J Med 1998, 338:867–872.PubMedCrossRefGoogle Scholar
  59. 59.
    Berkowitz K, Peters R, Kjos SL, et al.: Effect of troglitazone on insulin sensitivity and pancreatic beta-cell function in women at high risk for NIDDM. Diabetes 1996, 45:1572–1579.PubMedCrossRefGoogle Scholar
  60. 60.
    Patel J, Anderson RJ, Rappaport EB: Rosiglitazone monotherapy improves glycaemic control in patients with type 2 diabetes: a twelve-week, randomized, placebo-controlled study. Diabetes Obes Metab 1999, 1:165–172.PubMedCrossRefGoogle Scholar
  61. 61.
    Aronoff S, Rosenblatt S, Braithwaite S, et al.: Pioglitazone hydrochloride monotherapy improves glycemic control in the treatment of patients with type 2 diabetes: a 6-month randomized placebo-controlled dose-response study. The Pioglitazone 001 Study Group. Diabetes Care 2000, 23:1605–1611.PubMedCrossRefGoogle Scholar
  62. 62.
    Phillips LS, Grunberger G, Miller E, et al.: Once- and twice-daily dosing with rosiglitazone improves glycemic control in patients with type 2 diabetes. Diabetes Care 2001, 24:308–315.PubMedCrossRefGoogle Scholar
  63. 63.
    Peters AL: Using thiazolidinediones: rosiglitazone and pioglitazone in clinical practice. Am J Manag Care 2001, 7:S87–95. This paper offers practical insights into the clinical use of TZDs.PubMedGoogle Scholar
  64. 64.
    Greene DA: Rosiglitazone: a new therapy for type 2 diabetes. Expert Opin Invest Drugs 1999, 8:1709–1719.CrossRefGoogle Scholar
  65. 65.
    Kipnes MS, Krosnick A, Rendell MS, et al.: Pioglitazone hydrochloride in combination with sulfonylurea therapy improves glycemic control in patients with type 2 diabetes mellitus: a randomized, placebo-controlled study. Am J Med 2001, 111:10–17.PubMedCrossRefGoogle Scholar
  66. 66.
    Lebovitz HE, Dole JF, Patwardhan R, et al.: Rosiglitazone monotherapy is effective in patients with type 2 diabetes. J Clin Endocrinol Metab 2001, 86:280–288.PubMedCrossRefGoogle Scholar
  67. 67.
    Nolan JJ, Jones NP, Patwardhan R, Deacon LF: Rosiglitazone taken once daily provides effective glycaemic control in patients with type 2 diabetes mellitus. Diabet Med 2000, 17:287–294.PubMedCrossRefGoogle Scholar
  68. 68.
    Raskin P, Rappaport EB, Cole ST, et al.: Rosiglitazone short-term monotherapy lowers fasting and post-prandial glucose in patients with type II diabetes. Diabetologia 2000, 43:278–284.PubMedCrossRefGoogle Scholar
  69. 69.
    Einhorn D, Rendell M, Rosenzweig J, et al.: Pioglitazone hydrochloride in combination with metformin in the treatment of type 2 diabetes mellitus: a randomized, placebo-controlled study. The Pioglitazone 027 Study Group. Clin Ther 2000, 22:1395–1409.PubMedCrossRefGoogle Scholar
  70. 70.
    Fonseca V, Rosenstock J, Patwardhan R, Salzman A: Effect of metformin and rosiglitazone combination therapy in patients with type 2 diabetes mellitus: a randomized controlled trial. JAMA 2000, 283:1695–1702. This randomized clinical trial highlights the role of TZDs used in combination with other agents for the treatment of type 2 diabetes as compared with monotherapy. Such approaches may improve insulin sensitivity as well as beta cell function.PubMedCrossRefGoogle Scholar
  71. 71.
    Kumar S, Prange A, Schulze J, et al.: Troglitazone, an insulin action enhancer, improves glycemic control and insulin sensitivity in elderly type 2 diabetic patients. Diabet Med 1998, 15:772–779.PubMedCrossRefGoogle Scholar
  72. 72.
    Horton ES, Whitehouse F, Ghazzi MN, et al.: Troglitazone in combination with sulfonylurea restores glycemic control in patients with type 2 diabetes. The Troglitazone Study Group. Diabetes Care 1998, 21:1462–1469.PubMedCrossRefGoogle Scholar
  73. 73.
    Iwamoto Y, Kosaka K, Kuzuya T, et al.: Effect of combination therapy of troglitazone and sulfonylureas in patients with Type 2 diabetes who were poorly controlled by sulfonylurea therapy alone. Diabet Med 1996, 13:365–370.PubMedCrossRefGoogle Scholar
  74. 74.
    Steinberg D, Parthasarathy S, Carew TE, et al.: Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 1989, 320:915–924.PubMedGoogle Scholar
  75. 75.
    Chait A, Brazg RL, Tribble DL, Krauss RM: Susceptibility of small, dense, low-density lipoproteins to oxidative modification in subjects with the atherogenic lipoprotein phenotype, pattern B. Am J Med 1993, 94:350–356.PubMedCrossRefGoogle Scholar
  76. 76.
    Austin MA: Plasma triglyceride as a risk factor for coronary heart disease. The epidemiologic evidence and beyond. Am J Epidemiol 1989, 129:249–259.PubMedGoogle Scholar
  77. 77.
    Fujiwara T, Yoshioka S, Yoshioka T, et al.: Characterization of new oral antidiabetic agent CS-045. Studies in KK and ob/ob mice and Zucker fatty rats. Diabetes 1988, 37:1549–1558.PubMedCrossRefGoogle Scholar
  78. 78.
    Ikeda H, Taketomi S, Sugiyama Y, et al.: Effects of pioglitazone on glucose and lipid metabolism in normal and insulin resistant animals. Arzneimittelforschung 1990, 40:156–162.PubMedGoogle Scholar
  79. 79.
    Oakes ND, Kennedy CJ, Jenkins AB, et al.: A new antidiabetic agent, BRL 49653, reduces lipid availability and improves insulin action and glucoregulation in the rat. Diabetes 1994, 43:1203–1210.PubMedCrossRefGoogle Scholar
  80. 80.
    Ghazzi MN, Perez JE, Antonucci TK, et al.: Cardiac and glycemic benefits of troglitazone treatment in NIDDM. The Troglitazone Study Group. Diabetes 1997, 46:433–439.PubMedCrossRefGoogle Scholar
  81. 81.
    Product Insert Information, 2002.Google Scholar
  82. 82.
    Goldstein BJ: Rosiglitazone. Int J Clin Pract 2000, 54:333–337.PubMedGoogle Scholar
  83. 83.
    King AB: A comparison in a clinical setting of the efficacy and side effects of three thiazolidinediones. Diabetes Care 2000, 23:557.PubMedCrossRefGoogle Scholar
  84. 84.
    Sakamoto J, Kimura H, Moriyama S, et al.: Activation of human peroxisome proliferator-activated receptor (PPAR) subtypes by pioglitazone. Biochem Biophys Res Commun 2000, 278:704–711.PubMedCrossRefGoogle Scholar
  85. 85.
    Yoshioka S, Nishino H, Shiraki T, et al.: Antihypertensive effects of CS-045 treatment in obese Zucker rats. Metabolism 1993, 42:75–80.PubMedCrossRefGoogle Scholar
  86. 86.
    Tack CJ, Smits P, Demacker PN, Stalenhoef AF: Troglitazone decreases the proportion of small, dense LDL and increases the resistance of LDL to oxidation in obese subjects. Diabetes Care 1998, 21:796–799.PubMedCrossRefGoogle Scholar
  87. 87.
    Noguchi N, Sakai H, Kato Y, et al.: Inhibition of oxidation of low density lipoprotein by troglitazone. Atherosclerosis 1996, 123:227–234.PubMedCrossRefGoogle Scholar
  88. 88.
    Cominacini L, Garbin U, Fratta Pasini A, et al.: Troglitazone reduces LDL oxidation and lowers plasma E-selectin concentration in NIDDM patients. Diabetes 1998, 47:130–133.PubMedCrossRefGoogle Scholar
  89. 89.
    Rubins HB, Robins SJ, Collins D, et al.: Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med 1999, 341:410–418.PubMedCrossRefGoogle Scholar
  90. 90.
    Plutzky J: Peroxisome proliferator-activated receptors in vascular biology and atherosclerosis: emerging insights for evolving paradigms. Curr Atheroscler Rep 2000, 2:327–335. This review provides an overview of the emerging data for a direct role of PPARs in the vasculature.PubMedGoogle Scholar
  91. 91.
    Bishop-Bailey D: Peroxisome proliferator-activated receptors in the cardiovascular system. Br J Pharmacol 2000, 129:823–834.PubMedCrossRefGoogle Scholar
  92. 92.
    Glass CK, Witztum JL: Atherosclerosis the road ahead. Cell 2001, 104:503–516.PubMedCrossRefGoogle Scholar
  93. 93.
    Marx N, Schonbeck U, Lazar MA, et al.: Peroxisome proliferators-activated receptor gamma activators inhibit gene expression and migration in human vascular smooth muscle cells. Circ Res 1998, 83:1097–1103.PubMedGoogle Scholar
  94. 94.
    Marx N, Sukhova G, Murphy C, et al.: Macrophages in human atheroma contain PPARgamma: differentiation- dependent peroxisomal proliferator-activated receptor gamma(PPAR-gamma) expression and reduction of MMP-9 activity through PPARgamma activation in mononuclear phagocytes in vitro. Am J Pathol 1998, 153:17–23.PubMedGoogle Scholar
  95. 95.
    Ricote M, Li AC, Willson TM, et al.: The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998, 391:79–82.PubMedCrossRefGoogle Scholar
  96. 96.
    Plutzky J: Atherosclerotic plaque rupture: emerging insights and opportunities. Am J Cardiol 1999, 84:15J-20J.PubMedCrossRefGoogle Scholar
  97. 97.
    Goetze S, Xi XP, Kawano H, et al.: PPAR gamma-ligands inhibit migration mediated by multiple chemoattractants in vascular smooth muscle cells. J Cardiovasc Pharmacol 1999, 33:798–806.PubMedCrossRefGoogle Scholar
  98. 98.
    Tontonoz P, Nagy L, Alvarez JG, et al.: PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998, 93:241–252.PubMedCrossRefGoogle Scholar
  99. 99.
    Spiegelman BM: PPARgamma in monocytes: less pain, any gain? Cell 1998, 93:153–155.PubMedCrossRefGoogle Scholar
  100. 100.
    Minamikawa J, Tanaka S, Yamauchi M, et al.: Potent inhibitory effect of troglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 1998, 83:1818–1820.PubMedCrossRefGoogle Scholar
  101. 101.
    Koshiyama H, Shimono D, Kuwamura N, et al.: Rapid communication: inhibitory effect of pioglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 2001, 86:3452.PubMedCrossRefGoogle Scholar
  102. 102.
    Jackson SM, Parhami F, Xi XP, et al.: Peroxisome proliferatoractivated receptor activators target human endothelial cells to inhibit leukocyte-endothelial cell interaction. Arterioscler Thromb Vasc Biol 1999, 19:2094–2104.PubMedGoogle Scholar
  103. 103.
    Pasceri V, Wu HD, Willerson JT, Yeh ET: Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-gamma activators. Circulation 2000, 101:235–238.PubMedGoogle Scholar
  104. 104.
    Marx N, Sukhova GK, Collins T, et al.: PPARalpha activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation 1999, 99:3125–3131.PubMedGoogle Scholar
  105. 105.
    Ricote M, Huang J, Fajas L, et al.: Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc Natl Acad Sci U S A 1998, 95:7614–7619.PubMedCrossRefGoogle Scholar
  106. 106.
    Seed B: PPARgamma and colorectal carcinoma: conflicts in a nuclear family [news, comment]. Nat Med 1998, 4:1004–1005.PubMedCrossRefGoogle Scholar
  107. 107.
    Marx N, Mach F, Sauty A, et al.: Peroxisome proliferators-activated receptor-gamma activators inhibit IFN-gamma-induced expression of the T cell-active CXC chemokines IP-10, Mig, and I-TAC in human endothelial cells. J Immunol 2000, 164:6503–6508.PubMedGoogle Scholar
  108. 108.
    Han KH, Chang MK, Boullier A, et al.: Oxidized LDL reduces monocyte CCR2 expression through pathways involving peroxisome proliferator-activated receptor gamma. J Clin Invest 2000, 106:793–802.PubMedGoogle Scholar
  109. 109.
    Kintscher U, Kon D, Wakino S, et al.: Doxazosin inhibits monocyte chemotactic protein 1-directed migration of human monocytes. J Cardiovasc Pharmacol 2001, 37:532–539.PubMedCrossRefGoogle Scholar
  110. 110.
    Wu GD: A nuclear receptor to prevent colon cancer. N Engl J Med 2000, 342:651–653.PubMedCrossRefGoogle Scholar
  111. 111.
    Yang XY, Wang LH, Chen T, et al.: Activation of human T lymphocytes is inhibited by peroxisome proliferators-activated receptor gamma (PPARgamma) agonists. PPAR-gamma co-association with transcription factor NFAT. J Biol Chem 2000, 275:4541–4544.PubMedCrossRefGoogle Scholar
  112. 112.
    Harris SG, Phipps RP: The nuclear receptor PPAR gamma is expressed by mouse T lymphocytes and PPAR gamma agonists induce apoptosis. Eur J Immunol 2001, 31:1098–1105.PubMedCrossRefGoogle Scholar
  113. 113.
    Kwak BR, Myit S, Mulhaupt F, et al.: PPARgamma but not PPARalpha ligands are potent repressors of major histocompatibility complex class II induction in atheroma-associated cells. Circ Res 2002, 90:356–362.PubMedCrossRefGoogle Scholar
  114. 114.
    Yang XY, Wang LH, Mihalic K, et al.: Interleukin (IL)-4 indirectly suppresses IL-2 production by human T lymphocytes via peroxisome proliferator-activated receptor gamma activated by macrophage-derived 12/15-lipoxygenase ligands. J Biol Chem 2002, 277:3973–3978.PubMedCrossRefGoogle Scholar
  115. 115.
    Marx N, Kehrle B, Kohlhammer K, et al.: PPAR activators as antiinflammatory mediators in human T lymphocytes: implications for atherosclerosis and transplantation-associated arteriosclerosis. Circ Res 2002, 90:703–710.PubMedCrossRefGoogle Scholar
  116. 116.
    Li AC, Brown KK, Silvestre MJ, et al.: Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2000, 106:523–531. This paper examines the effects of PPARγ agonists in various animal models of atherosclerosis. In all cases, the PPAR agonists decreased the extent of lesions, although interestingly no effect was seen in female mice.PubMedCrossRefGoogle Scholar
  117. 117.
    Chen Z, Ishibashi S, Perrey S, et al.: Troglitazone inhibits atherosclerosis in apolipoprotein E-knockout mice: pleiotropic effects on CD36 expression and HDL. Arterioscler Thromb Vasc Biol 2001, 21:372–377.PubMedGoogle Scholar
  118. 118.
    Collins AR, Meehan WP, Kintscher U, et al.: Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and nondiabetic low density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 2001, 21:365–371.PubMedGoogle Scholar
  119. 119.
    Claudel T, Leibowitz MD, Fievet C, et al.: Reduction of atherosclerosis in apolipoprotein E knockout mice by activation of the retinoid X receptor. Proc Natl Acad Sci U S A 2001, 98:2610–2615.PubMedCrossRefGoogle Scholar
  120. 120.
    Takagi T, Yamamuro A, Tamita K, et al.: Impact of troglitazone on coronary stent implantation using small stents in patients with type 2 diabetes mellitus. Am J Cardiol 2002, 89:318–322.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc 2002

Authors and Affiliations

  • Annaswamy Raji
  • Jorge Plutzky
    • 1
  1. 1.Cardiovascular Division/Department of MedicineBrigham and Women’s HospitalBostonUSA

Personalised recommendations