Current Cardiology Reports

, Volume 3, Issue 1, pp 29–36 | Cite as

Clinical applications of vascular gene therapy

  • Juha Rutanen
  • Tuomas T. Rissanen
  • Antti Kivelä
  • Ismo Vajanto
  • Seppo Ylä-Herttuala


Despite significant advances in prevention, coronary artery disease remains the leading cause of death in the Western world. Surgical bypass and angioplasty are the primary interventional therapies but they are limited by the problems of restenosis and graft occlusions. Natural response to vascular occlusion involves the formation of collateral vessels that bypass obstructions, but they are often inefficient in relieving ischemia. Vascular gene transfer offers a promising new approach to solve these problems. Its potential has been shown in animal models and in first human trials using vascular endothelial growth factor, fibroblast growth factor, and E2F cell-cycle transcription factor decoy. However, further basic research on gene transfer vectors, gene delivery techniques, and identification of effective treatment genes is needed to improve the efficacy and safety of human vascular gene therapy.


Vascular Endothelial Growth Factor Gene Therapy Gene Transfer Gene Delivery Critical Limb Ischemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Ylä-Herttuala S, Martin JF: Cardiovascular gene therapy. Lancet 2000, 355:213–222.PubMedCrossRefGoogle Scholar
  2. 2.
    Laitinen M, Mäkinen K, Manninen H, et al.: Adenovirusmediated gene transfer to lower limb artery of patients with chronic critical leg ischemia. Hum Gene Ther 1998, 9:1481–1486. First demonstration that adenoviruses can transfect human atherosclerotic arteries in vivo.PubMedGoogle Scholar
  3. 3.
    Baumgartner I, Pieczek A, Manor O, et al.: Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation 1998, 97:1114–1123. First demonstration about the possible efficacy of VEGF plasmid gene transfer in critical limb ischemia.PubMedGoogle Scholar
  4. 4.
    Rosengart TK, Lee LY, Patel SR, et al.: Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 1999, 100:468–474. Demonstration of possible efficacy of VEGF121 adenovirus gene transfer to myocardium.PubMedGoogle Scholar
  5. 5.
    Losordo DW, Vale PR, Symes JF, et al.: Gene therapy for myocardial angiogenesis -Initial clinical results with direct myocardial injection of phVEGF(165) as sole therapy for myocardial ischemia. Circulation 1998, 98:2800–2804. Demonstration of possible efficacy of intramyocardial administration of VEGF plasmid.PubMedGoogle Scholar
  6. 6.
    Symes JF, Losordo DW, Vale PR, et al.: Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease. Ann Thorac Surg 1999, 68:830–836.PubMedCrossRefGoogle Scholar
  7. 7.
    Laitinen M, Hartikainen J, Hiltunen MO, et al.: Cathetermediated vascular endothelial growth factor gene transfer to human coronary arteries after angioplasty. Hum Gene Ther 2000, 11:263–270. Demonstration about the feasibility of VEGF gene transfer to human coronary arteries during angioplasty.PubMedCrossRefGoogle Scholar
  8. 8.
    Hiltunen MO, Turunen MP, Turunen AM, et al.: Intravascular adenovirus-mediated VEGF-C gene transfer reduces neointima formation in balloon-denuded rabbit aorta. Circulation 2000, 102: 2262–2268PubMedGoogle Scholar
  9. 9.
    Cavazzana-Calvo M, Hacein-Bey S, de Saint B, et al.: Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease Science 2000, 288:669–672.PubMedCrossRefGoogle Scholar
  10. 10.
    Khuri FR, Nemunaitis J, Ganly I, et al.: A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med 2000, 6:879–885.PubMedCrossRefGoogle Scholar
  11. 11.
    Laitinen M, Pakkanen T, Donetti E, et al.: Gene transfer into the carotid artery using an adventitial collar: comparison of the effectiveness of the plasmid- liposome complexes, retroviruses, pseudotyped retroviruses, and adenoviruses. Hum Gene Ther 1997, 8:1645–1650.PubMedGoogle Scholar
  12. 12.
    Turunen MP, Hiltunen MO, Ruponen M, et al.: Efficient adventitial gene delivery to rabbit carotid artery with cationic polymer-plasmid complexes. Gene Ther 1999, 6:6–11.PubMedCrossRefGoogle Scholar
  13. 13.
    Laitinen M, Zachary I, Breier G, et al.: Vegf gene transfer reduces intimal thickening via increased production of nitric oxide in carotid arteries. Hum Gene Ther 1997, 8:1737–1744.PubMedGoogle Scholar
  14. 14.
    Sirois MG, Simons M, Edelman ER: Antisense oligonucleotide inhibition of PDGFR-beta receptor subunit expression directs suppression of intimal thickening. Circulation 1997, 95:669–676.PubMedGoogle Scholar
  15. 15.
    Mäkinen K, Laitinen M, Manninen H, et al.: Catheter-mediated VEGF gene transfer to human lower limb arteries after PTA [abstract]. Circulation 1999, 100:I-770.Google Scholar
  16. 16.
    Hiltunen MO, Turunen MP, Turunen AM, et al.: Biodistribution of adenoviral vector to non-target tissues after in vivo gene transfer to arterial wall using intravascular and periadventitial gene delivery methods. FASEB J 2000, 14: 2230–2236PubMedCrossRefGoogle Scholar
  17. 17.
    Randall JL, Springer ML, Blanco-Bose WE, et al.: VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation 2000, 102:898–903.Google Scholar
  18. 18.
    Nalbantoglu J, Pari G, Karpati G, Holland PC: Expression of the primary coxsackie and adenovirus receptor is downregulated during skeletal muscle maturation and limits the efficacy of adenovirus-mediated gene delivery to muscle cells. Hum Gene Ther 1999, 10:1009–1019.PubMedCrossRefGoogle Scholar
  19. 19.
    Binley K, Iqball S, Kingsman A, et al.: An adenoviral vector regulated by hypoxia for the treatment of ischaemic disease and cancer. Gene Ther 1999, 6:1721–1727.PubMedCrossRefGoogle Scholar
  20. 20.
    Pakkanen TM, Laitinen M, Hippeläinen M, et al.: Enhanced plasma cholesterol lowering effect of retrovirus- mediated LDL receptor gene transfer to WHHL rabbit liver after improved surgical technique and stimulation of hepatocyte proliferation by combined partial liver resection and thymidine kinase ganciclovir treatment. Gene Ther 1999, 6:34–41.PubMedCrossRefGoogle Scholar
  21. 21.
    Grossman M, Rader DJ, Muller DW, et al.: A pilot study of ex vivo gene therapy for homozygous familial hypercholesterolaemia. Nat Med 1995, 1:1148–1154.PubMedCrossRefGoogle Scholar
  22. 22.
    Isner JM, Pieczek A, Schainfeld R, et al.: Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet 1996, 348:370–374.PubMedCrossRefGoogle Scholar
  23. 23.
    Isner JM, Baumgartner I, Rauh G, et al.: Treatment of thromboangitis obliterans (Buerger’s disease) by intramuscular gene transfer of vascular endothelial growth factor: preliminary clinical results J Vasc Surg 1998, 28:964–973.PubMedCrossRefGoogle Scholar
  24. 24.
    Lee LY, Patel SR, Hackett NR, et al.: Focal angiogen therapy using intramyocardial delivery of an adenovirus vector coding for vascular endothelial growth factor 121. Ann Thorac Surg 2000, 69:14–23.PubMedCrossRefGoogle Scholar
  25. 25.
    Esakof DD, Maysky M, Losordo DW, et al.: Intraoperative multiplane transesophageal echocardiography for guiding direct myocardial gene transfer of vascular endothelial growth factor in patients with refractory angina pectoris. Hum Gene Ther 1999, 10:2307–2314.PubMedCrossRefGoogle Scholar
  26. 26.
    Lamping KG, Rios CD, Chun JA, et al.: Intrapericardial administration of adenovirus for gene transfer. Am J Physiol 1997, 272:H310-H317.PubMedGoogle Scholar
  27. 27.
    Mann MJ, Whittemore AD, Donaldson MC, et al.: Ex-vivo gene therapy of human vascular bypass grafts with E2F decoy: the PREVENT single-centre, randomised, controlled trial. Lancet 1999, 354:1493–1498. Positive results about the effectiveness of decoy E2F in reducing bypass graft failure.PubMedCrossRefGoogle Scholar
  28. 28.
    Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z: Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999, 13:9–22.PubMedGoogle Scholar
  29. 29.
    Tsurumi Y, Takeshita S, Chen D, et al.: Direct intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor augments collateral development and tissue perfusion. Circulation 1996, 94:3281–3290.PubMedGoogle Scholar
  30. 30.
    Mack CA, Patel SR, Schwarz EA, et al.: Biologic bypass with the use of adenovirus-mediated gene transfer of the complementary deoxyribonucleic acid for vascular endothelial growth factor 121 improves myocardial perfusion and function in the ischemic porcine heart. J Thorac Cardiovasc Surg 1998, 115:168–176.PubMedCrossRefGoogle Scholar
  31. 31.
    Witzenbichler B, Asahara T, Murohara T, et al.: Vascular endothelial growth factor-C (VEGF-C/VEGF-2) promotes angiogenesis in the setting of tissue ischemia. Am J Pathol 1998, 153:381–394.PubMedGoogle Scholar
  32. 32.
    Lopez JJ, Edelman ER, Stamler A, et al.: Angiogenic potential of perivascularly delivered aFGF in a porcine model of chronic myocardial ischemia. Am J Physiol 1998, 274:H930-H936.PubMedGoogle Scholar
  33. 33.
    Galzie Z, Kinsella AR, Smith JA: Fibroblast growth factors and their receptors. Biochem Cell Biol 1997, 75:669–685.PubMedCrossRefGoogle Scholar
  34. 34.
    Thurston G, Rudge JS, Ioffe E, et al.: Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 2000, 6:460–463.PubMedCrossRefGoogle Scholar
  35. 35.
    Kalka C, Masuda H, Takahashi T, et al.: Vascular endothelial growth factor(165) gene transfer augments circulating endothelial progenitor cells in human subjects. Circ Res 2000, 86:1198–1202.PubMedGoogle Scholar
  36. 36.
    Pecher P, Schumacher BA: Angiogenesis in ischemic human myocardium: clinical results after 3 years. Ann Thorac Surg 2000, 69:1414–1419.PubMedCrossRefGoogle Scholar
  37. 37.
    Van Belle E, Rivard A, Chen D, et al.: Hypercholesterolemia attenuates angiogenesis but does not preclude augmentation by angiogenic cytokines. Circulation 1997, 96:2667–2674.PubMedGoogle Scholar
  38. 38.
    Rivard A, Berthou-Soulie L, Principe N, et al.: Age-dependent defect in VEGF expression is associated with reduced HIF-1 activity. J Biol Chem 2000, 275: 29643–29647PubMedCrossRefGoogle Scholar
  39. 39.
    Waltenberger J, Lange J, Kranz A: Vascular endothelial growth factor-A-induced chemotaxis of monocytes is attenuated in patients with diabetes mellitus: A potential predictor for the individual capacity to develop collaterals. Circulation 2000, 102:185–190.PubMedGoogle Scholar
  40. 40.
    Rade JJ, Schulick AH, Virmani R, Dichek DA: Local adenoviralmediated expression of recombinant hirudin reduces neointima formation after arterial injury. Nat Med 1996, 2:293–298.PubMedCrossRefGoogle Scholar
  41. 41.
    Waugh JM, Kattash M, Li J, et al.: Gene therapy to promote thromboresistance: local overexpression of tissue plasminogen activator to prevent arterial thrombosis in an in vivo rabbit model. Proc Natl Acad Sci U S A 1999, 96:1065–1070.PubMedCrossRefGoogle Scholar
  42. 42.
    Schwartz RS: Pathophysiology of restenosis: interaction of thrombosis, hyperplasia, and/or remodeling. Am J Cardiol 1998, 81:14E-17E.PubMedCrossRefGoogle Scholar
  43. 43.
    Jawien A, Bowen-Pope DF, Lindner V, et al.: Platelet-derived growth factor promotes smooth muscle migration and intimal thickening in a rat model of balloon angioplasty. J Clin Invest 1992, 89:507–511.PubMedCrossRefGoogle Scholar
  44. 44.
    Deguchi J, Namba T, Hamada H, et al.: Targeting endogenous platelet-derived growth factor B-chain by adenovirusmediated gene transfer potently inhibits in vivo smooth muscle proliferation after arterial injury. Gene Ther 1999, 6:956–965.PubMedCrossRefGoogle Scholar
  45. 45.
    Cheng L, Mantile G, Pauly R, et al.: Adenovirus-mediated gene transfer of the human tissue inhibitor of metalloproteinase-2 blocks vascular smooth muscle cell invasiveness in vitro and modulates neointimal development in vivo. Circulation 1998, 98:2195–2201.PubMedGoogle Scholar
  46. 46.
    Asahara T, Bauters C, Pastore C, et al.: Local delivery of vascular endothelial growth factor accelerates reendothelialization and attenuates intimal hyperplasia in balloon-injured rat carotid artery. Circulation 1995, 91:2793–2801.PubMedGoogle Scholar
  47. 47.
    Virmani R, Farb A: Pathology of in-stent restenosis. Curr Opin Lipidol 1999, 10:499–506.PubMedCrossRefGoogle Scholar
  48. 48.
    McKenna CJ, Camrud AR, Sangiorgi G, et al.: Fibrin-film stenting in a porcine coronary injury model: efficacy and safety compared with uncoated stents. J Am Coll Cardiol 1998, 31:1434–1438.PubMedCrossRefGoogle Scholar
  49. 49.
    Laukkanen J, Lehtolainen P, Gough PJ, et al.: Adenovirusmediated gene transfer of a secreted form of human macrophage scavenger receptor inhibits modified lowdensity lipoprotein degradation and foam-cell formation in macrophages. Circulation 2000, 101:1091–1096.PubMedGoogle Scholar
  50. 50.
    Schumacher B, Pecher P, von Specht BU, Stegmann T: Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation 1998, 97:645–650. First demonstration about the possible efficacy of recombinant FGF in humans.PubMedGoogle Scholar
  51. 51.
    Laham RJ, Sellke FW, Edelman ER, et al.: Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of a phase I randomized, double-blind, placebo-controlled trial. Circulation 1999, 100:1865–1871. First blinded, controlled study about the effects of recombinant FGF in bypass patients.PubMedGoogle Scholar
  52. 52.
    Lindner V, Reidy MA: Expression of VEGF receptors in arteries after endothelial injury and lack of increased endothelial regrowth in response to VEGF. Arterioscler Thromb Vasc Biol 1996, 16:1399–1405.PubMedGoogle Scholar
  53. 53.
    Poliakova L, Kovesdi I, Wang X, et al.: Vascular permeability effect of adenovirus-mediated vascular endothelial growth factor gene transfer to the rabbit and rat skeletal muscle. J Thorac Cardiovasc Surg 1999, 118:339–347.PubMedCrossRefGoogle Scholar
  54. 54.
    Lazarous DF, Shou M, Scheinowitz M, et al.: Comparative effects of basic fibroblast growth factor and vascular endothelial growth factor on coronary collateral development and the arterial response to injury. Circulation 1996, 94:1074–1082.PubMedGoogle Scholar
  55. 55.
    Horowitz JR, Rivard A, van der Zee R, et al.: Vascular endothelial growth factor/vascular permeability factor produces nitric oxide-dependent hypotension. Evidence for a maintenance role in quiescent adult endothelium. Arterioscler Thromb Vasc Biol 1997, 17:2793–2800.PubMedGoogle Scholar
  56. 56.
    Lehrman S: Virus treatment questioned after gene therapy death. Nature 1999, 401:517–518.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc. 2001

Authors and Affiliations

  • Juha Rutanen
    • 1
  • Tuomas T. Rissanen
    • 1
  • Antti Kivelä
    • 1
  • Ismo Vajanto
    • 1
  • Seppo Ylä-Herttuala
    • 1
  1. 1.A.I. Virtanen InstituteUniversity of Kuopio and Kuopio University HospitalKuopioFinland

Personalised recommendations