Current Cardiology Reports

, Volume 2, Issue 2, pp 90–98

The effects of neurohormonal antagonism on pathologic left ventricular remodeling in heart failure

  • William L. Lombardi
  • Edward M. Gilbert
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cohn J: Expert Forum on Cardiac Remodeling. Atlanta, GA: April 1998.Google Scholar
  2. 2.
    Kostuk KWJ, Kazamias TM, Gander MP, et al.: Left ventricular size after acute myocardial infarction: serial changes and their prognostic significance. Circulation 1973, 47:1174–1179.PubMedGoogle Scholar
  3. 3.
    White HD, Norris RM, Brown MA, et al.: Left ventricular end-systolic volume as the major determinant of survival after recovery from endomyocardial infarction. Circulation 1987, 76:44–51.PubMedGoogle Scholar
  4. 4.
    Gaudron P, Eilles C, Kugler I, et al.: Progressive left ventricular dysfunction and remodeling after myocardial infarction: potential mechanisms and early predictors. Circulation 1993, 87:755–763.PubMedGoogle Scholar
  5. 5.
    Ertl G, Gaudron P, Neubauer S, et al.: Cardiac dysfunction and development of heart failure. Eur Heart J 1993, 14suppl A:33–37.PubMedGoogle Scholar
  6. 6.
    Hunter JJ, Grace AA, Chien KR: Molecular and cellular biology of cardiac hypertrophy and failure. In Molecular basis of heart disease: a companion to Braunwald's Heart Disease. Edited by Chien KR. Philadelphia: WB Saunders; 1999:211–250.Google Scholar
  7. 7.
    Xia Z, Dickens M, Raingeaud J, et al.: Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995, 270:1326–1331.PubMedCrossRefGoogle Scholar
  8. 8.
    Wang Y, Huang S, Sah VP, et al.: Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem 1998, 273:2161–2168.PubMedCrossRefGoogle Scholar
  9. 9.
    Wang Y, Su B, Sah VP, et al.: Cardiac hypertrophy induced by mitogen-activated protein kinase 7, a specific activator for c-Jun NH2-terminal kinase in ventricular muscle cells. J Biol Chem 1998, 273:5423–5426.PubMedCrossRefGoogle Scholar
  10. 10.
    Sah VP, Hoshijima M, Chien KR, Brown JH: Rho is required for Galphaq and alpha1-adrenergic receptor signaling in cardiomyocytes: dissociation of Ras and Rho pathways. J Biol Chem 1996, 271:311850–31190.Google Scholar
  11. 11.
    Gunja-Smith Z, Morales AR, Romanelli R, Woessner JF: Remodeling of human myocardial collagen in idiopathic dilated cardiomyopathy. Am J Pathol 1996, 148:1639–1648.PubMedGoogle Scholar
  12. 12.
    Marijianowski MMH, Teeling PT, Mann J, Becker AE: Dilated cardiomyopathy is associated with an increase in the type I/ type III collagen ratio: a quantitative assessment. J Am Coll Cardiol 1995, 25:1263–1272.PubMedCrossRefGoogle Scholar
  13. 13.
    Anversa P, Ricci R, Olivetti G: Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: a review. J Am Coll Cardiol 1986, 7:1140–1149.PubMedCrossRefGoogle Scholar
  14. 14.
    Messerli F: Pathophysiology of left ventricular hypertrophy. In Left Ventricular Hypertrophy and its regression. Edited by Cruickshang JMesserli F. London: Science Press; 1992.Google Scholar
  15. 15.
    Baig MK, Mahon N, McKenna, et al.: The pathophysiology of advanced heart failure. Am Heart J 1998, 135:S216-S230.PubMedCrossRefGoogle Scholar
  16. 16.
    Olivetti G, Abbi R, Quaini F, et al.: Apoptosis in the failing human heart. N Engl J Med 1997, 336:1131–1141.PubMedCrossRefGoogle Scholar
  17. 17.
    MacLellan WR, Schneider MD: Death by design. Programmed cell death in cardiovascular biology and disease. Circ Res 1997, 81:137–144.PubMedGoogle Scholar
  18. 18.
    Teiger E, Dam T-V, Richard L, et al.: Apoptosis in pressure overload-induced heart hypertrophy in the rat. J Clin Invest 1996, 97:2891–2897.PubMedGoogle Scholar
  19. 19.
    James TN, St. Martin E, Willis PWI, et al.: Apoptosis as a possible cause of gradual development of complete heart block and fatal arrhythmias associated with the absence of the AB node, sinus node, and internodal pathways. Circulation 1996, 93:1424–1438.PubMedGoogle Scholar
  20. 20.
    Hamet P, Moreau P, Dam T-V, et al.: The time window of apoptosis: a new component in the therapeutic strategy for cardiovascular remodeling. J Hypertens 1996, 14(suppl 5):65–70.Google Scholar
  21. 21.
    Katz AM: Cardiomyopathy of overloads: a major determinant of prognosis in congestive heart failure. N Engl J Med. 1990, 322:100–110.PubMedCrossRefGoogle Scholar
  22. 22.
    Karam R, Healy BP, Wicker P: Coronary reserve is depressed in postmyocardial infarction reactive cardiac hypertrophy. Circulation 1990, 81:238–246.PubMedGoogle Scholar
  23. 23.
    Anversa P, Beghi C, Kikkawa Y, et al.: Myocardial infarction in rats: infarct size, myocyte hypertrophy and capillary growth. Circ Res 1986, 58:26–37.PubMedGoogle Scholar
  24. 24.
    McDonald KM, Yoshiyama M, Francis GS, et al.: Abnormal myocardial bioenergetics in canine asymptomatic left ventricular dysfunction. J Am Coll Cardiol 1994, 23:786–793.PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang J, McDonald KM: Bioenergetic consequences of left ventricular remodeling. Circulation 1995, 92:1011–1019.PubMedGoogle Scholar
  26. 26.
    Apstein CS, Mueller M, Hood WBJ: Ventricular contracture and compliance changes with global ischemia and reperfusion and their effect on coronary resistance in the rat. Circ Res 1977, 41: 206–217.PubMedGoogle Scholar
  27. 27.
    Fowler MB, Laser JA, Hopkins GL, et al.: Assessment of the beta-adrenergic receptor pathway in the intact failing human heart: progressive receptor downregulation and subsensitivity to agonist response. Circulation 1986, 74:1290–1302.PubMedGoogle Scholar
  28. 28.
    Port JD, Gilbert EM, Larrabee P, et al.: Neurotransmitter depletion compromises the ability of indirect-acting amines to provide inotropic support in the failing human heart. Circulation 1990, 81:929–938.PubMedGoogle Scholar
  29. 29.
    White M, Yanowitz F, Gilbert EM, et al.: Role of beta adrenergic receptor downregulation in the peak exercise response in patients with heart failure due to idiopathic dilated cardiomyopathy. Am J Cardiol 1995, 76:1271–1276.PubMedCrossRefGoogle Scholar
  30. 30.
    Bristow MR, Ginsburg R, Umans V, et al.: Beta-1 and beta-2 adrenergic receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta-1 receptor downregulation in heart failure. Circ Res 1986, 59:297–309.PubMedGoogle Scholar
  31. 31.
    Huang LY, Tholanikunnel BG, Vakalopoulou E, et al.: The M(r) 35,000 beta-adrenergic receptor mRNA-binding protein induced by beta agonists requires both an AUUUA pentamer and U-rich domains for RNA recognition. J Biol Chem 1993, 268:25769–25775.PubMedGoogle Scholar
  32. 32.
    Port JD, Huang LY, Malbon CC: Beta adrenergic agonists that downregulate receptor mRNA upregulate a M(r) 35,000 protein(s) that selectively binds to beta-adrenergic receptor mRNAs. J Biol Chem 1992, 267:24103–24108.PubMedGoogle Scholar
  33. 33.
    Bristow MR, Herschberger RE, Port JD, et al.: Beta-1 and beta-2 adrenergic receptor-mediated adenylate cyclase stimulation in non-failing and failing human ventricular myocardium. Mol Pharmacol 1989, 35:295–303.PubMedGoogle Scholar
  34. 34.
    Bristow MR, Anderson FL, Port JD, et al.: Differences in beta-adrenergic neuroeffector mechanisms in ischemic versus idiopathic dilated cardiomyopathy. Circulation 1991, 84:1024–1039.PubMedGoogle Scholar
  35. 35.
    Bristow MR, Sandoval AB, Gilbert EM, et al.: Myocardial alpha and beta adrenergic receptors in heart failure: is cardiac-derived norepinephrine the regulatory signal? Eur Heart J 1988, 9:35–40.PubMedGoogle Scholar
  36. 36.
    Vago T, Bevilacqua M, Norbiator G, et al.: Identification of alpha-1 adrenergic receptors on sarcolemma from normal subjects and patients with idiopathic dilated cardiomyopathy: characteristics and linkage to GTP-binding protein. Circ Res 1989, 64:474–481.PubMedGoogle Scholar
  37. 37.
    Starksen NF, Simpson PC, Bishopric N, et al.: Cardiac myocyte hypertrophy is associated with c-myc proto-oncogene expression. Proc Natl Acad Sci USA 1986, 83:8348–8350.PubMedCrossRefGoogle Scholar
  38. 38.
    Ostman-Smith I: Cardiac sympathetic nerves as the final common pathway in the induction of adaptive cardiac hypertrophy. Clin Sci 1981, 1:265–272.Google Scholar
  39. 39.
    Goodfriend TL, Elliot ME, Catt KJ: Angiotensin receptors and their antagonists. N Engl J Med 1996, 334:1649–1654.PubMedCrossRefGoogle Scholar
  40. 40.
    Ohyama K, Yamano Y, Chaki SW, et al.: Domains of G-protein coupling in angiotensin II receptor type 1: studies by site-directed mutagenesis. Biochem Biophys Res Commun 1992, 189:677–683.PubMedCrossRefGoogle Scholar
  41. 41.
    Catt KJ, Sandberg K, Balla T: Angiotensin II receptor and signal transduction mechanisms. In Cellular and Molecular Biology of the Renin-Angiotensin System. Edited by Raizada MK Phillips MI Sumners C. Boca Raton, FL: CRC Press; 1993:307–356.Google Scholar
  42. 42.
    Spat A, Enyedi P, Hajnoczky G, et al.: Generation and role of calcium signal in adrenal glomerulosa cells. Exp Physiol 1991, 76:859–885.PubMedGoogle Scholar
  43. 43.
    Bhat GJ, Thekkumkara TJ, Thomas WG, et al.: Angiotensin II stimulates sis-inducing factor-like DNA binding activity: evidence that the AT1A receptor activates transcription factor Stat91 and/or a related protein. J Biol Chem 1994, 264:31443–31449.Google Scholar
  44. 44.
    Sadoshima J, Izumo S: Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts: critical role of the AT1 receptor subtype. Circ Res 1993, 73:412–423.Google Scholar
  45. 45.
    Gibbons GH, Dzau VJ: The emerging concept of vascular remodeling. N Engl J Med 1994, 330:1431–1438.PubMedCrossRefGoogle Scholar
  46. 46.
    Villarreal FJ, Kim NN, Gilanthony D, et al.: Identification of functional angiotensin II receptors on rat cardiac fibroblasts. Circulation 1993, 88:2849–2861.PubMedGoogle Scholar
  47. 47.
    Sadoshima J-I, Izumo S: Signal transduction pathways of angiotensin II-induced c-fos gene expression in cardiac myocytes in vitro. Role of phospholipid-derived second messengers. Circ Res 1993, 73:424–438.PubMedGoogle Scholar
  48. 48.
    Nahmias C, Strosberg AD: The angiotensin AT2 receptor: searching for signal-transduction pathways and physiological function. Trends Pharmacol Sci 1995, 6:223–225.CrossRefGoogle Scholar
  49. 49.
    Katz AM: Protein families that mediate Ca2+ signaling in the cardiovascular system. Am J Cardiol 1996, 78(suppl 9A):2–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Stoll M, Steckelings UM, Paul M, et al.: The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest 1995, 95:651–657.PubMedCrossRefGoogle Scholar
  51. 51.
    Buisson B, Bottari SP, de Gasparo M, et al.: The angiotensin AT2 receptor modulates inhibition of cell proliferation in coronary endothelial cells. FEBS Lett 1992, 309:161–164.PubMedCrossRefGoogle Scholar
  52. 52.
    Chiu AT, Roscoe WA, McCall DE, et al.: Angiotensin per trophic responses in rat aortic smooth muscle cells. Receptor 1991, 1:133–140.PubMedGoogle Scholar
  53. 53.
    Steinberg MI, West SA, Palkowitz AD: Non-peptide angiotensin II receptro antagonists. Cardiovasc Drug Rev 1993, 11:312–358.CrossRefGoogle Scholar
  54. 54.
    Hall SA, Cigarroa CG, Marcoux L, et al.: Time course of improvement in left ventricular function, mass and geometry in patients with congestive heart failure treated with betaadrenergic blockade. J Am Coll Cardiol 1995, 25:1154–1161.PubMedCrossRefGoogle Scholar
  55. 55.
    Lowes BD, Gill EA, Abraham WT, et al.: Effects of carvedilol on left ventricular mass, chamber geometry, and mitral regurgitation in chronic heart failure. Am J Cardiol 1999, 83:1201–1205.PubMedCrossRefGoogle Scholar
  56. 56.
    Schiller NB, Skioldebrand CG, Schiller EJ, et al.: Canine left ventricular mass estimation by two-dimensional echocardiography. Circulation 1983, 68:210–216.PubMedGoogle Scholar
  57. 57.
    Feiring AJ, Rumberger JA, Reiter SJ, et al.: Determination of left ventricular mass in dogs with rapid-acquisition cardiac computed tomographic scanning. Circulation 1985, 72:1355–1364.PubMedGoogle Scholar
  58. 58.
    Captopril Multicenter Research Group. A placebo-controlled trial of captopril in refractory chronic congestive heart failure. J Am Coll Cardiol 1983, 2:755–763.CrossRefGoogle Scholar
  59. 59.
    Giles TD, Katz R, Sullivan JM, et al.: Short- and long-acting angiotensin-converting enzyme inhibitors: a randomized trial of lisinopril versus captopril in the treatment of congestive heart failure. The Multicenter Lisinopril-Captopril Congestive Heart Failure Study Group. J Am Coll Cardiol 1989, 13:1240–1247.PubMedCrossRefGoogle Scholar
  60. 60.
    Chalmers JP, West MJ, Cyran J, et al.: Placebo-controlled study of lisinopril in congestive heart failure: a multicenter study. J Cardiovasc Pharmacol 1987, 9(suppl 3):89–97.CrossRefGoogle Scholar
  61. 61.
    Cohn JN, Johnson G, Ziesche S, et al.: A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med 1991, 325:303–310.PubMedCrossRefGoogle Scholar
  62. 62.
    Greenberg B, Quinones MA, Koilpillai C, et al.: Effects of long-term enalapril therapy on cardiac structure and function in patients with left ventricular dysfunction. Results of the SOLVD echocardiography substudy. Circulatioin 1995, 91:2573–2581.Google Scholar
  63. 63.
    Pfeffer MA, Lamas GA, Vaughan DE, et al.: Effect of captopril on progressive ventricular dilation after anterior myocardial infarction. N Engl J Med 1988, 319:80–86.PubMedCrossRefGoogle Scholar
  64. 64.
    St. John Sutton M, Pfeffer MA, Moye L, et al.: Cardiovascular death and left ventricular remodeling two years after myocardial infarction: baseline predictors and impact of long-term use of captopril. Information from the Survival and Ventricular Enlargement (SAVE) trial Circulation 1997, 96:3294–3299.PubMedGoogle Scholar
  65. 65.
    St. John Sutton M, Pfeffer MA, Plappert T, et al.: Quantitative two-dimensional echocardiographic measurements are major predictors of adverse cardiovascular events after acute myocardial infarction. The protective effects of captopril. Circulation 1994, 89:68–75.PubMedGoogle Scholar
  66. 66.
    Bristow MR, Roden RL, Lowes BD, et al.: The role of thirdgeneration beta-blocking agents in chronic heart failure. Clin Cardiol 1998, 21(suppl I):3–13.CrossRefGoogle Scholar
  67. 67.
    Gilbert EM, Abraham WT, Olsen S, et al.: Comparative hemodynamic, left ventricular functional, and antiadrenergic effects of chronic treatment with metoprolol versus carvedilol in the failing heart. Circulation 1996, 94:2817–2825.PubMedGoogle Scholar
  68. 68.
    The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 1999, 353:9–13.Google Scholar
  69. 69.
    Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet 1999; 35:2001–2007.Google Scholar
  70. 70.
    Packer M, Bristow MR, Cohn JN, et al.: The effect of carvedilol on morbidity and mortality in patients with chronic congestive heart failure. N Engl J Med 1996, 334:1349–1355.PubMedCrossRefGoogle Scholar
  71. 71.
    Bristow MR, O'Connel JB, Gilbert EM, et al.: Dose-response of chronic beta-blocker treatment in heart failure from either idiopathic dilated or ischemic cardiomyopathy. Bucindolol Investigators. Circulation 1994, 89:1632–1642.PubMedGoogle Scholar
  72. 72.
    Xamoterol in severe heart failure. The Xamoterol in Severe Heart Failure Study Group. Lancet 1990, 336:1–6.Google Scholar
  73. 73.
    Lechat P, Pacer M, Chalon S, et al.: Clinical effects of betaadrenergic blockade in chronic heart failure: a meta-analysis of double-blind, placebo-controlled, randomized trials. Circulation 1998, 98:1184–1191.PubMedGoogle Scholar
  74. 74.
    Bristow MR, Gilbert EM, Abraham WT, et al.: Carvedilol produces dose-related improvements in left ventricular function and survival in subjects with chronic heart failure. MOCHA Investigators. Circulation 1996, 94:2807–2816.PubMedGoogle Scholar
  75. 75.
    Eichhorn EJ, Bedotto JB, Malloy CR, et al.: Effect of betaadrenergic blockade on myocardial function and energetics in congestive heart failure. Improvements in hemodynamic, contractile, and diastolic performance with bucindolol. Circulation 1990, 82:473–483.PubMedGoogle Scholar
  76. 76.
    Eichhorn EJ, Hersch CM, Barnett JH, et al.: Effect of metoprolol on myocardial function and energetics in patients with non-ischemic dilated cardiomyopathy: double-blind, placebo-controlled study. J Am Coll Cardiol 1994, 24:1310–1320.PubMedCrossRefGoogle Scholar
  77. 77.
    Quaife RA, Christian PE, Gilbert EM, et al.: Effects of carvedilol on right ventricular function in chronic heart failure. Am J Cardiol 1998, 81: 247–250.PubMedCrossRefGoogle Scholar
  78. 78.
    Doughty RN, Whalley GA, Gamble G, et al.: Left ventricular remodeling with carvedilol in patients with congestive heart failure due to ischemic heart disease. Australia-New Zealand Heart Failure Research Collaborative Group. J Am Coll Cardiol 1997, 29:1060–1066.PubMedCrossRefGoogle Scholar
  79. 79.
    Gilbet EM, Munger MA, Renlund DG, et al.: Are the beneficial effects of carvedilol in heart failure sustained long term [abstract]? Eur Heart J 1997, 18(suppl):399(P2264).Google Scholar
  80. 80.
    Di Lenarda A, Sabbadini G, Salvatore L, et al.: Long-term effects of carvedilol in idiopathic dilated cardiomyopathy with persistent left ventricular dysfunction despite chronic metoprolol. J Am Coll Cardiol 1999, 33:1926–1934.PubMedCrossRefGoogle Scholar
  81. 81.
    Metra M, Nodari S, D'Aloia A, et al.: Effects of chronic beta-blockade on the haemodynamics and functional capacity of patients with heart failure: a randomized comparison between metoprolol and carvedilol. Eur Heart J 1998, 19(suppl V-VIII):P1720.Google Scholar
  82. 82.
    Kukin ML, Kalman J, Charney RH, et al.: Prospective, randomized comparison of effect of long-term treatment with metoprolol or carvedilol on symptoms, exercise, ejection fraction, and oxidative stress in heart failure. Circulation 1999, 99:2645–2651.PubMedGoogle Scholar
  83. 83.
    Sanderson JE, Chan SK, Yip G, et al.: Beta-blockade in heart failure: a comparison of carvedilol with metoprolol. J Am Coll Cardiol 1999, 34:1522–1528.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc 2000

Authors and Affiliations

  • William L. Lombardi
    • 1
  • Edward M. Gilbert
    • 1
  1. 1.Division of Cardiology 4A-100University of Utah Health Sciences CenterSalt Lake CityUSA

Personalised recommendations