Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mitral Annular Calcification: Association with Atherosclerosis and Clinical Implications


Purpose of Review

This review summarizes the pathophysiology of mitral annular calcification (MAC) with recent findings and current strategies for diagnosis and treatment.

Recent Findings

Major factors in MAC development seem to be shear stress of the flow past the mitral valve, local inflammation, and dysregulation in regulators of mineral metabolism. MAC itself poses daunting technical challenges. Implanting a valve on top of the calcium bar might lead to paravalvular leak (PVL) that is less likely to heal. Annular decalcification allows for better valve seating and potentially better healing and less PVL. This, however, comes with the risk for catastrophic atrioventricular groove disruption. MAC can be sharply dissected with the scalpel; the annulus can be reconstructed with the autologous pericardium. Transcatheter mitral valve replacement is a promising approach in the treatment of patients who are deemed high-risk surgical candidates with severe MAC.


MAC is a multifactorial disease that has some commonalities with atherosclerosis, mainly regarding lipid accumulation and calcium deposition. It is of great clinical importance, being a risk marker of cardiovascular events (including sudden death) and, with its progression, can have a negative impact on patients’ lives.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Yater WM, Cornell VH. The heart block due to calcareous lesions in the bundle of His. Ann Intern Med. 1935;8:777.

  2. 2.

    Bedeir K, Kaneko T, Aranki S. Current and evolving strategies in the management of severe mitral annular calcification. The Journal of Thoracic and Cardiovascular Surgery 2018 volume 157, number 2. DOI:

  3. 3.

    Carpentier AF, Pellerin M, Fuzellier JF, Relland JY. Extensive calcification of the mitral valve anulus: pathology and surgical management. J Thorac Cardiovasc Surg. 1996;111(4):718–30.

  4. 4.

    Roberts WC, Perloff JK. Mitral valvular disease: a clinicopathologic survey of the conditions causing the mitral valve to function abnormally. Ann Intern Med. 1972;77(939–975):939–75.

  5. 5.

    Nestico PF, Depace NL, Morganroth J, Kotler MN, Ross J. Mitral annular calcification: clinical, pathophysiology, and echocardiographic review. Am Heart J. 1984;107:989–96.

  6. 6.

    Fox CS, Guo CY, Larson MG, Vasan RS, Parise H, O'Donnell CJ, et al. Relations of inflammation and novel risk factors to valvular calcification. Am J Cardiol. 2006;97:1502–5.

  7. 7.

    Maher ER, Young G, Smyth-Walsh B, Pugh S, Curtis JR. Aortic and mitral valve calcification in patients with end-stage renal disease. Lancet. 1987;2:875–7.

  8. 8.

    Abd Alamir M, Radulescu V, Goyfman M, et al. Prevalence and correlates of mitral annular calcification in adults with chronic kidney disease: results from CRIC study, 117e122. Atherosclerosis, DOI. 2015;242.

  9. 9.

    • Bortnick AE, Bartz TM, Ix JH, et al. Association of inflammatory, lipid and mineral markers with cardiac calcification in older adults. Heart. 2016;102:1826–34. It shows the association between fetuin-A and FGF-23 in MAC development.

  10. 10.

    Roberts WC. The senile cardiac calcification syndrome. Am J Cardiol. 1986;58:572–4.

  11. 11.

    Adler Y, Fink N, Spector D, Wiser I, Sagie A. Mitral annulus calcification - a window to diffuse atherosclerosis of the vascular system. Atherosclerosis. March 2001;155(1):1–8.

  12. 12.

    Sharma R, Pellerin D, Gaze DC, Mehta RL, Gregson H, Streather CP, et al. Mitral annular calcification predicts mortality and coronary artery disease in end stage renal disease. Atherosclerosis. 2007;191:348–54.

  13. 13.

    O’Neal WT, Efird JT, Nazarian S, et al. Mitral annular calcification progression and the risk of atrial fibrillation: results from MESA. European Heart Journal - Cardiovascular Imaging (2017) 0, 1–6. DOI:

  14. 14.

    Benjamin EJ, Plehn JF, D’Agostino RB, Belanger AJ, Comai K, Fuller DL, et al. Mitral annular calcification and the risk of stroke in an elderly cohort. N Engl J Med. 1992;327:374–9.

  15. 15.

    • Dietl C, Hawthorn C, Raizada V. Risk of cerebral embolization with caseous calcification of the mitral annulus: review article. The Open Cardiovascular Medicine Journal. 2016;10(1):221–32. It alerts for the high risk of CVE in patients with CCMA.

  16. 16.

    Labovitz AJ, Nelson JG, Windhorst DM, Kennedy HL, Williams GA. Frequency of mitral valve dysfunction from mitral anular calcium as detected by Doppler echocardiography. Am J Cardiol. 1985;55:133–7.

  17. 17.

    Simon MA, Liu SF. Calcification of the mitral valve annulus and its relation to functional valvular disturbance. Am Heart J. 1954;48:497–505.

  18. 18.

    Lung B, Baron G, Butchart EG, et al. A prospective survey of patients with valvular heart disease in Europe: the Euro Heart Survey on valvular heart disease. Eur Heart J. 2003;24:1231–43.

  19. 19.

    Freeman RV, Otto CM. Spectrum of calcific aortic valve disease: pathogenesis, disease progression, and treatment strategies. Circulation. 2005;111:3316–26.

  20. 20.

    • Afshar M, Luk K, Do R, et al. Association of triglyceride-related genetic variants with mitral annular calcification. Am J Cardiol. 2017;69:24. Genetic predisposition to high triglyceride levels might lead to MAC development.

  21. 21.

    Shekar C, Budoff M. Calcification of the heart: mechanisms and therapeutic avenues. Expert Rev Cardiovasc Ther. 2018.

  22. 22.

    Zekry SB, Freeman J, Jajoo A, et al. Patient-specific quantitation of mitral valve strain by computer analysis of three-dimensional echocardiography a pilot study. Circ Cardiovasc Imaging. 2016;9:e003254.

  23. 23.

    Allison MA, Cheung P, Criqui MH, Langer RD, Wright CM. Mitral and aortic annular calcification are highly associated with systemic calcified atherosclerosis. Circulation. 2006;113:861–6.

  24. 24.

    Johnson R, Leopold JA, Loscalzo J. Vascular calcification pathobiological mechanisms and clinical implications. Circ Res. 2006;99:1044–59.

  25. 25.

    Albanese I, Khan K, Barratt B, et al. Atherosclerotic calcification: Wnt is the hint. J Am Heart Assoc. 2018;7:e007356.

  26. 26.

    • Cetin EHO, Cetin MS, Canpolat U, et al. The forgotten variable of shear stress in mitral annular calcification: whole blood viscosity. Med Princ Pract. 2015;24:444–50. Shear stress as an important role in MAC physiopathology.

  27. 27.

    Gomel MA, Lee RK, Grande-Allen KJ. Comparing the role of mechanical forces in vascular and valvular calcification progression. Front Cardiovasc Med. 2018;5:197.

  28. 28.

    Pagnozzi LA, Butcher JT. Mechanotransduction mechanisms in mitral valve physiology and disease pathogenesis. Front Cardiovasc Med. 2017;4:83.

  29. 29.

    Wylie-Sears J, Aikawa A, Levine RA, et al. Mitral valve endothelial cells with osteogenic differentiation potential. Arterioscler Thromb Vasc Biol. 2011;31:598–607.

  30. 30.

    Schoen FJ. Evolving concepts of cardiac valve dynamics. Circulation. 2008;118(18):1864–80.

  31. 31.

    Rezaeian P, Miller PE, Haberlen SA, Razipour A, Bahrami H, Castillo R, et al. Extra-coronary calcification (aortic valve calcification, mitral annular calcification, aortic valve ring calcification and thoracic aortic calcification) in HIV seropositive and seronegative men: multicenter AIDS cohort study. J Cardiovasc Comput Tomogr. 2016;10(3):229–36.

  32. 32.

    Guler S, Varol E. The relation between echocardiographic epicardial fat thickness and mitral annular calcification. Afri Health Sci. 2019;19(1):1657–64.

  33. 33.

    Holmberg SD, Moorman AC, Williamson JM, Tong TC, Ward DJ, Wood KC, et al. Protease inhibitors and cardiovascular outcomes in patients with HIV-1. Lancet. 2002;360:1747–8.

  34. 34.

    Tibuakuu M, Zhao D, Boer IH, et al. Relation of serum vitamin D to risk of mitral annular and aortic valve calcium (from the Multi-Ethnic Study of Atherosclerosis [MESA]). Am J Cardiol. 2017 August 01;120(3):473–8.

  35. 35.

    Silva AP, Gundlach K, Büchel J, et al. Low magnesium levels and FGF-23 dysregulation predict mitral valve calcification as well as intima media thickness in predialysis diabetic patients. International Journal of Endocrinology. 2015;308190:10.

  36. 36.

    Montezano AC, Zimmerman D, Yusuf H, Burger D, Chignalia AZ, Wadhera V, et al. Vascular smooth muscle cell differentiation to an osteogenic phenotype involves TRPM7 modulation by magnesium. Hypertension. 2010;56:453–62.

  37. 37.

    Thanassoulis G, Campbell CY, Owens DS, Smith JG, Smith AV, Peloso GM, et al. Genetic associations with valvular calcification and aortic stenosis. N Engl J Med. 2013;368:503–12.

  38. 38.

    Fox CS, Vasan RS, Parise H, Levy D, O'Donnell CJ, D'Agostino RB, et al. Mitral annular calcification predicts cardiovascular morbidity and mortality. Circulation. 2003;107:1492–6.

  39. 39.

    Movva R, Murthy K, Romero-Corral A, Seetha Rammohan HR, Fumo P, Pressman GS. Calcification of the mitral valve and annulus: systematic evaluation of effects on valve anatomy and function. J Am Soc Echocardiogr. 2013;26(10):1135–42.

  40. 40.

    Iwataki M, Takeuchi M, Otani K, Kuwaki H, Yoshitani H, Abe H, et al. Calcific extension towards the mitral valve causes non-rheumatic mitral stenosis in degenerative aortic stenosis: real-time 3D transoesophageal echocardiography study. Open Heart. 2014;1:e000136.

  41. 41.

    Yeboah J, Carr JJ, Terry JG, Ding J, Zeb I, Liu S, et al. Computed tomography-derived cardiovascular risk markers, incident cardiovascular events, and all-cause mortality in non-diabetics. The Multi-Ethnic Study of Atherosclerosis. Eur J Prev Cardiol. 2014 October;21(10):1233–41.

  42. 42.

    Higgins J, Mayo J, Skarsgard P. Cardiac computed tomography facilitates operative planning in patients with mitral calcification. Ann Thorac Surg. 2013;95:e9–11.

  43. 43.

    • Blanke P, Naoum C, Dvir D, et al. Predicting LVOT obstruction in Transcatheter mitral valve implantation concept of the neo-LVOT. JACC Cardiovasc Imaging. 2017;10(4):482–5. The concept of simulating a new LVOT to predict obstruction after TMVR.

  44. 44.

    Kurazumi H, Mikamo A, Suzuki R, Hamano K. Mitral-valve replacement for a severely calcified mitral annulus: a simple and novel technique. Eur J Cardiothorac Surg. 2011 Mar;39(3):407–9.

  45. 45.

    Kohsaka S, Jin Z, Rundek T, et al. Impact of mitral annular calcification on cardiovascular events in a multiethnic community: the northern Manhattan study. J Am Coll Cardiol Img. 2008;1:617–23.

  46. 46.

    •• Eleid MF, Foley TA, Said SM, Pislaru SV, Rihal CS. Severe mitral annular calcification: multimodality imaging for therapeutic strategies and interventions. JACC Cardiovasc Imaging. 2016;9:1318–37. Imaging assessment, classification and importance to interventions in MAC.

  47. 47.

    Deluca G, Correale M, Ieva R, del Salvatore B, Gramenzi S, di Biase M. The incidence and clinical course of caseous calcification of the mitral annulus: a prospective echocardiographic study. J Am Soc Echocardiogr. 2008;21:828–33.

  48. 48.

    Curl E, Riemer E. Caseous calcification of the mitral annulus: case report and brief review. European Heart Journal - Case Reports. 2018;2(4).

  49. 49.

    Harpaz D, Auerbach I, Vered Z, et al. Caseous calcification of the mitral annulus: a neglected, unrecognized diagnosis. J Am Soc Echocardiogr. 2001;14:825–31.

  50. 50.

    Mazzucco A, Abbasciano R, Onorati F, Brognoli G, Fanti D, Gottin L. Anterior mitral annulus caseoma: as benign as posterior counterparts? Cardiovasc Pathol. 2016;25:336–8.

  51. 51.

    Dingli P, Felice H, Mizzi A, Montefort S. Caseous mitral annular calcification mimicking a lung tumor on chest X-ray. J Family Med Prim Care. 2017;6:442–4.

  52. 52.

    Ono M, Mizuno A, Masuda K, Suzuki K, Abe K, Kawazoe K, et al. Infective endocarditis on caseous calcification of the mitral annulus involving both the anterior and posterior annulus: a rare case report. Intern Med. 2018 Apr 1;57(7):965–9.

  53. 53.

    Michałowska I, Szymański P, Kwiatek P, Spałek M, Furmanek M, Zieliński P, et al. Caseous calcification of the mitral annulus – the complementary role of computed tomography and transthoracic echocardiogram. Pol J Radiol. 2018;83:537–42.

  54. 54.

    Konety SH, Koene RJ, Norby FL, et al. Echocardiographic predictors of sudden cardiac death the Atherosclerosis Risk in Communities Study and Cardiovascular Health Study. Circ Cardiovasc Imaging. 2016;9:e004431.

  55. 55.

    Matsuyama TA, Ishibashi-Ueda H, Ikeda Y, Nagatsuka K, Miyashita K, Amaki M, et al. Critical multi-organ emboli originating from collapsed, vulnerable caseous mitral annular calcification. Pathol Int. 2012;62(7):496–9.

  56. 56.

    Sequeira A, Morris L, Patel B, et al. Calcific mitral stenosis in the hemodialysis patient. Hemodial Int. 2014;18(1):212–4.

  57. 57.

    Labovitz AJ, Nelson JG, Windhorst DM, Kennedy HL, Williams GA. Frequency of mitral valve dysfunction from mitral anular calcium as detected by Doppler echocardiography. Am J Cardiol. 1985;55:133–7.

  58. 58.

    Fulkerson PK, Beaver BM, Auseon JC, Graber HL. Calcification of the mitral annulus: etiology, clinical associations, complications and therapy. Am J Med. 1979;66(6):967–77.

  59. 59.

    Hospital TG, Hospital M. Bacterial endocarditis of the mitral valve associated with annular calcification 119: 323–326, 1978.

  60. 60.

    Minardi G, Pino PG, Sordi M, Pavaci H, Manzara C, Pulignano G, et al. Infective endocarditis on mitral annular calcification: a case report. Cases Journal. 2009;2:9072.

  61. 61.

    Eicher JC, De Nadai L, Soto FX, et al. Bacterial endocarditis complicating mitral annular calcification: a clinical and echocardiographic study. J Heart Valve Dis. 2004;13:217–27.

  62. 62.

    Vistarini N, d’Alessandro C, Aubert S, et al. Surgery for infective endocarditis on mitral annulus calcification. J Heart Valve Dis. 2007;16:611–6.

  63. 63.

    Nair CK, Runco V, Everson GT, Boghairi A, Mooss AN, Mohiuddin SM, et al. Conduction defects and mitral annulus calcification. Br Heart J. 1980;44:162–7.

  64. 64.

    O’Neal WT, Efird JT, Nazarian S, et al. Mitral annular calcification and incident atrial fibrillation in the Multi-Ethnic Study of Atherosclerosis. Europace. 2015;17:358–63.

  65. 65.

    Pekdemir H, Cansel M, Yagmur J, et al. Assessment of atrial conduction time by tissue Doppler echocardiography and P-wave dispersion in patients with mitral annulus calcification. J Electrocardiol. 2010;43:339–43.

  66. 66.

    • Saran N, Greason KL, Schaff HV, et al. Does mitral valve calcium in patients undergoing mitral valve replacement portend worse survival? Ann Thorac Surg 2018. 2019;107(2):444–52. A less aggressive surgery achieves satisfactory results in treating MAC.

  67. 67.

    Price J, Glineur D, De Kerchove L, El Khoury G. Mitral valve repair is feasible following extensive decalcification and reconstruction of the atrioventricular groove. J Heart Valve Dis. 2015 Jan;24(1):46–52.

  68. 68.

    Kurazumi H, Mikamo A, Suzuki R, Hamano K. Mitral valve replacement in patients with severely calcified mitral valve annulus: surgical technique. Eur J Cardiothorac Surg. 2011;39(3):407–9.

  69. 69.

    David TE, Feindel CM, Armstrong S, Sun Z. Reconstruction of the mitral anulus: a ten-year experience. J Thorac Cardiovasc Surg. 1995;110(5):1323–32.

  70. 70.

    Atoui R, Lash V, Mohammadi S, et al. Intra-atrial implantation of a mitral valve prosthesis in a heavily calcified mitral annulus. Eur J Cardiothorac Surg. 2009;36:776–8.

  71. 71.

    Cammack PL, Edie RN, Edmunds LH Jr. Bar calcification of the mitral annulus. A risk factor in mitral valve replacement. J Thorac Cardiovasc Surg. 1987;94:399–404.

  72. 72.

    Nataf P, Pavie A, Jault F, et al. Intraatrial insertion of a mitral prosthesis in a destroyed or calcified mitral annulus. Ann Thorac Surg. 1994;58:163–7.

  73. 73.

    Coselli JS, Crawford ES. Calcified mitral valve annulus: prosthesis insertion. Ann Thorac Surg. 1988;46:584–6.

  74. 74.

    Stefano SD, Lopez J, Florez S, et al. Building a new annulus: a technique for mitral valve replacement in heavily calcified annulus. Ann Thorac Surg. 2009;87:1625–7.

  75. 75.

    MPBO S, LRP C, Rayol SC, RGS D, Menezes AM, Clavel MA, et al. Prothesis-patient mismatch negatively affects outcomes after mitral valve replacement: meta-analysis of 10.239 patients. Braz J Cardiovasc Surg. 2019;34(2):203–12.

  76. 76.

    Lafrenière-Bessi V, Cameron-Gagné M, Perron J, Lévesque MH, Laflamme M, Charbonneau É, et al. Mitral annular calcification and mitral valve replacement: a new approach. Ann Thorac Surg. 2018 Feb;105(2):e55–7.

  77. 77.

    Chauvette V, Laflamme É, Lafrenière-Bessi V, Marzouk M, Bertrand O, O'Connor K, et al. Caseous calcification of the mitral annulus: a role for surgery. Ann Thorac Surg. 2019;S0003-4975(19)31566–8.

  78. 78.

    •• Guerrero M, Urena M, Himbert D, Wang DD, et al. 1-Year outcomes of transcatheter mitral valve replacement in patients with severe mitral annular calcification. J Am Coll Cardiol. 2018;71:1841–53. A promise for future treatment of severe MAC.

  79. 79.

    Praz F, Khalique OK, Lee R, Veeragandham R, Russell H, Guerrero M, et al. Transatrial implantation of a transcatheter heart valve for severe mitral annular calcification. J Thorac Cardiovasc Surg. 2018.

  80. 80.

    Russell HM, Guerrero ME, Salinger MH, et al. Open atrial transcatheter mitral valve replacement in patients with mitral annular calcification. J Am Coll Cardiol. 2018;72:1437–48.

  81. 81.

    Pala AA, Iner H, Ercisli MA. Approach to an unusual cardiac mass: mitral annulus caseoma. Braz J Cardiovasc Surg. 2019. Creative Commons user license

Download references

Author information

Correspondence to Luiz Rafael P. Cavalcanti.

Ethics declarations

Conflict of Interest

Luiz Rafael P. Cavalcanti, Michel Pompeu B. O. Sá, Álvaro M. Perazzo, Antonio C. Escorel Neto, Rafael A. F. Gomes, Alexander Weymann, Konstantin Zhigalov, Arjang Ruhparwar, and Ricardo C. Lima each declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Evidence-Based Medicine, Clinical Trials and Their Interpretations

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cavalcanti, L.R.P., Sá, M.P.B.O., Perazzo, Á.M. et al. Mitral Annular Calcification: Association with Atherosclerosis and Clinical Implications. Curr Atheroscler Rep 22, 9 (2020).

Download citation


  • Mitral annular calcification
  • Atherosclerosis
  • Mitral valve replacement
  • Transcatheter mitral valve replacement