Perivascular Adipose Tissue and Coronary Atherosclerosis: from Biology to Imaging Phenotyping

  • Andrew Lin
  • Damini Dey
  • Dennis T. L. Wong
  • Nitesh NerlekarEmail author
Evidence-Based Medicine, Clinical Trials and Their Interpretations (L. Roever, Section Editor)


Purpose of Review

Perivascular adipose tissue (PVAT) has a complex, bidirectional relationship with the vascular wall. In disease states, PVAT secretes pro-inflammatory adipocytokines which may contribute to atherosclerosis. Recent evidence demonstrates that pericoronary adipose tissue (PCAT) may also function as a sensor of coronary inflammation. This review details PVAT biology and its clinical translation to current imaging phenotyping.

Recent Findings

PCAT attenuation derived from routine coronary computed tomography (CT) angiography is a novel noninvasive imaging biomarker of coronary inflammation. Pro-inflammatory cytokines released from the arterial wall diffuse directly into the surrounding PCAT and inhibit adipocyte lipid accumulation in a paracrine manner. This can be detected as an increased PCAT CT attenuation, a metric which associates with high-risk plaque features and independently predicts cardiac mortality. There is also evidence that PCAT attenuation relates to coronary plaque progression and is modified by systemic anti-inflammatory therapies.


Due to its proximity to the coronary arteries, PCAT has emerged as an important fat depot in cardiovascular research. PCAT CT attenuation has the potential to improve cardiovascular risk stratification, and future clinical studies should examine its role in guiding targeted medical therapy.


Perivascular adipose tissue Atherosclerosis Inflammation Cardiac computed tomography angiography 


Funding information

Dr Nerlekar is supported by a post-doctoral scholarship from the National Heart Foundation and a Robertson Family Research Fellowship. Dr. Dey is supported in part by a National Heart, Lung, and Blood Institute grant 1R01HL133616.

Compliance with Ethical Standards

Conflict of Interest

Andrew Lin, Damini Dey, Dennis T.L. Wong, and Nitesh Nerlekar declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    WHO. Disease burden and mortality estimates. 2016.Google Scholar
  2. 2.
    Cholesterol Treatment Trialists’ C, Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–81.CrossRefGoogle Scholar
  3. 3.
    Libby P, Ridker Paul M, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105(9):1135–43.PubMedCrossRefGoogle Scholar
  4. 4.
    Ridker PM. How common is residual inflammatory risk? Circ Res. 2017;120(4):617–9.PubMedCrossRefGoogle Scholar
  5. 5.
    •• Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with Canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31 Landmark study validating the inflammatory hypothesis of atherosclerosis. PubMedCrossRefGoogle Scholar
  6. 6.
    Britton KA, Fox CS. Perivascular adipose tissue and vascular disease. Clini Lipidol. 2011;6(1):79–91.CrossRefGoogle Scholar
  7. 7.
    •• Antonopoulos AS, Sanna F, Sabharwal N, Thomas S, Oikonomou EK, Herdman L, et al. Detecting human coronary inflammation by imaging perivascular fat. Sci Transl Med. 2017;9(398) Seminal study linking biopsy-proven coronary inflamamtion to a PCAT CT attenuation, a novel imaging biomarker. PubMedCrossRefGoogle Scholar
  8. 8.
    Hubert HB, Feinleib M, McNamara PM, Castelli WP. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation. 1983;67(5):968–77.PubMedCrossRefGoogle Scholar
  9. 9.
    Hughes-Austin J, Larsen B, Allison M. Visceral adipose tissue and cardiovascular disease risk 2013.Google Scholar
  10. 10.
    Fuster JJ, Ouchi N, Gokce N, Walsh K. Obesity-induced changes in adipose tissue microenvironment and their impact on cardiovascular disease. Circ Res. 2016;118(11):1786–807.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007;116(1):39–48.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Armani A, Mammi C, Marzolla V, Calanchini M, Antelmi A, Rosano G, et al. Cellular models for understanding adipogenesis, adipose dysfunction, and obesity. 2010. 564-72 p.Google Scholar
  13. 13.
    Ntambi JM, Young-Cheul K. Adipocyte differentiation and gene expression. J Nutr. 2000;130(12):3122s–6s.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Chatterjee TK, Stoll LL, Denning GM, Harrelson A, Blomkalns AL, Idelman G, et al. Proinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding. Circ Res. 2009;104(4):541–9.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Szasz T, Webb RC. Perivascular adipose tissue: more than just structural support. Clin Sci (London, England : 1979). 2012;122(1):1–12.CrossRefGoogle Scholar
  16. 16.
    Rajsheker S, Manka D, Blomkalns AL, Chatterjee TK, Stoll LL, Weintraub NL. Crosstalk between perivascular adipose tissue and blood vessels. Curr Opin Pharmacol. 2010;10(2):191–6.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Thalmann S, Meier CA. Local adipose tissue depots as cardiovascular risk factors. Cardiovasc Res. 2007;75(4):690–701.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Hyvonen MT, Spalding KL. Maintenance of white adipose tissue in man. Int J Biochem Cell Biol. 2014;56:123–32.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Shimizu I, Walsh K. The whitening of brown fat and its implications for weight management in obesity. Curr Obes Rep. 2015;4(2):224–9.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    de Souza Batista CM, Yang R-Z, Lee M-J, Glynn NM, Yu D-Z, Pray J, et al. Omentin plasma levels and gene expression are decreased in obesity. Diabetes. 2007;56(6):1655.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Park SY, Kim KH, Seo KW, Bae JU, Kim YH, Lee SJ, et al. Resistin derived from diabetic perivascular adipose tissue up-regulates vascular expression of osteopontin via the AP-1 signalling pathway. J Pathol. 2014;232(1):87–97.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Karastergiou K, Mohamed-Ali V. The autocrine and paracrine roles of adipokines. Mol Cell Endocrinol. 2010;318(1-2):69–78.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Sartipy P, Loskutoff DJ. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci U S A. 2003;100(12):7265–70.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117(1):175–84.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Wensveen FM, Valentic S, Sestan M, Turk Wensveen T, Polic B. The “Big Bang” in obese fat: events initiating obesity-induced adipose tissue inflammation. Eur J Immunol. 2015;45(9):2446–56.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Moreno PR, Purushothaman KR, Fuster V, O’Connor WN. Intimomedial interface damage and adventitial inflammation is increased beneath disrupted atherosclerosis in the aorta: implications for plaque vulnerability. Circulation. 2002;105(21):2504–11.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Takaoka M, Suzuki H, Shioda S, Sekikawa K, Saito Y, Nagai R, et al. Endovascular injury induces rapid phenotypic changes in perivascular adipose tissue. Arterioscler Thromb Vasc Biol. 2010;30(8):1576–82.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Ohyama K, Matsumoto Y, Amamizu H, Uzuka H, Nishimiya K, Morosawa S, et al. Association of coronary perivascular adipose tissue inflammation and drug-eluting stent–induced coronary hyperconstricting responses in pigs. Arterioscler Thromb Vasc Biol. 2017;37(9):1757–64.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Ruan CC, Zhu DL, Chen QZ, Chen J, Guo SJ, Li XD, et al. Perivascular adipose tissue-derived complement 3 is required for adventitial fibroblast functions and adventitial remodeling in deoxycorticosterone acetate-salt hypertensive rats. Arterioscler Thromb Vasc Biol. 2010;30(12):2568–74.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Galvez-Prieto B, Bolbrinker J, Stucchi P, de Las Heras AI, Merino B, Arribas S, et al. Comparative expression analysis of the renin-angiotensin system components between white and brown perivascular adipose tissue. J Endocrinol. 2008;197(1):55–64.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Antonopoulos AS, Margaritis M, Verheule S, Recalde A, Sanna F, Herdman L, et al. Mutual regulation of epicardial adipose tissue and myocardial redox state by PPAR-gamma/adiponectin signalling. Circ Res. 2016;118(5):842–55.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    George J, Patal S, Wexler D, Sharabi Y, Peleg E, Kamari Y, et al. Circulating adiponectin concentrations in patients with congestive heart failure. Heart. 2006;92(10):1420–4.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Antonopoulos Alexios S, Margaritis M, Coutinho P, Digby J, Patel R, Psarros C, et al. Reciprocal effects of systemic inflammation and brain natriuretic peptide on adiponectin biosynthesis in adipose tissue of patients with ischemic heart disease. Arterioscler Thromb Vasc Biol. 2014;34(9):2151–9.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Henrichot E, Juge-Aubry CE, Pernin A, Pache JC, Velebit V, Dayer JM, et al. Production of chemokines by perivascular adipose tissue: a role in the pathogenesis of atherosclerosis? Arterioscler Thromb Vasc Biol. 2005;25(12):2594–9.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Knudson JD, Dick GM, Tune JD. Adipokines and coronary vasomotor dysfunction. Exp Biol Med (Maywood, NJ). 2007;232(6):727–36.Google Scholar
  36. 36.
    Weber C, Schober A, Zernecke A. Chemokines: key regulators of mononuclear cell recruitment in atherosclerotic vascular disease. Arterioscler Thromb Vasc Biol. 2004;24(11):1997–2008.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Thorlacius H, Lindbom L, Raud J. Cytokine-induced leukocyte rolling in mouse cremaster muscle arterioles in P-selectin dependent. Am J Phys. 1997;272(4 Pt 2):H1725–9.Google Scholar
  38. 38.
    Kwon HM, Sangiorgi G, Ritman EL, Lerman A, McKenna C, Virmani R, et al. Adventitial vasa vasorum in balloon-injured coronary arteries: visualization and quantitation by a microscopic three-dimensional computed tomography technique. J Am Coll Cardiol. 1998;32(7):2072–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Verhagen SN, Visseren FL. Perivascular adipose tissue as a cause of atherosclerosis. Atherosclerosis. 2011;214(1):3–10.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003;108(20):2460–6.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Baker AR, Silva NF, Quinn DW, Harte AL, Pagano D, Bonser RS, et al. Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovasc Diabetol. 2006;5:1.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Kremen J, Dolinkova M, Krajickova J, Blaha J, Anderlova K, Lacinova Z, et al. Increased subcutaneous and epicardial adipose tissue production of proinflammatory cytokines in cardiac surgery patients: possible role in postoperative insulin resistance. J Clin Endocrinol Metab. 2006;91(11):4620–7.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Baker AR, Harte AL, Howell N, Pritlove DC, Ranasinghe AM, da Silva NF, et al. Epicardial adipose tissue as a source of nuclear factor-kappaB and c-Jun N-terminal kinase mediated inflammation in patients with coronary artery disease. J Clin Endocrinol Metab. 2009;94(1):261–7.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Hirata Y, Kurobe H, Akaike M, Chikugo F, Hori T, Bando Y, et al. Enhanced inflammation in epicardial fat in patients with coronary artery disease. Int Heart J. 2011;52(3):139–42.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Konishi M, Sugiyama S, Sato Y, Oshima S, Sugamura K, Nozaki T, et al. Pericardial fat inflammation correlates with coronary artery disease. Atherosclerosis. 2010;213(2):649–55.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Verhagen SN, Vink A, van der Graaf Y, Visseren FL. Coronary perivascular adipose tissue characteristics are related to atherosclerotic plaque size and composition. A post-mortem study. Atherosclerosis. 2012;225(1):99–104.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Öhman MK, Luo W, Wang H, Guo C, Abdallah W, Russo HM, et al. Perivascular visceral adipose tissue induces atherosclerosis in apolipoprotein E deficient mice. Atherosclerosis. 2011;219(1):33–9.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Manka D, Chatterjee TK, Stoll LL, Basford JE, Konaniah ES, Srinivasan R, et al. Transplanted perivascular adipose tissue accelerates injury-induced neointimal hyperplasia: role of monocyte chemoattractant protein-1. Arterioscler Thromb Vasc Biol. 2014;34(8):1723–30.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Moe KT, Naylynn TM, Yin NO, Khairunnisa K, Allen JC, Wong MC, et al. Tumor necrosis factor-alpha induces aortic intima-media thickening via perivascular adipose tissue inflammation. J Vasc Res. 2013;50(3):228–37.PubMedCrossRefGoogle Scholar
  50. 50.
    Schroeter Marco R, Eschholz N, Herzberg S, Jerchel I, Leifheit-Nestler M, Czepluch Frauke S, et al. Leptin-dependent and leptin-independent paracrine effects of perivascular adipose tissue on neointima formation. Arterioscler Thromb Vasc Biol. 2013;33(5):980–7.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Iacobellis G, Corradi D, Sharma AM. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med. 2005;2(10):536–43.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Demircelik MB, Yilmaz OC, Gurel OM, Selcoki Y, Atar IA, Bozkurt A, et al. Epicardial adipose tissue and pericoronary fat thickness measured with 64-multidetector computed tomography: potential predictors of the severity of coronary artery disease. Clinics (Sao Paulo, Brazil). 2014;69(6):388–92.CrossRefGoogle Scholar
  53. 53.
    Dey D, Nakazato R, Li D, Berman DS. Epicardial and thoracic fat—noninvasive measurement and clinical implications. Cardiovasc Diagn Ther. 2012;2(2):85–93.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Wheeler GL, Shi R, Beck SR, Langefeld CD, Lenchik L, Wagenknecht LE, et al. Pericardial and visceral adipose tissues measured volumetrically with computed tomography are highly associated in type 2 diabetic families. Investig Radiol. 2005;40(2):97–101.CrossRefGoogle Scholar
  55. 55.
    Ding X, Terzopoulos D, Diaz-Zamudio M, Berman DS, Slomka PJ, Dey D. Automated pericardium delineation and epicardial fat volume quantification from noncontrast CT. Med Phys. 2015;42(9):5015–26.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Nerlekar N, Baey Y-W, Brown AJ, Muthalaly RG, Dey D, Tamarappoo B, et al. Poor correlation, reproducibility, and agreement between volumetric versus linear epicardial adipose tissue measurement. JACC Cardiovasc Imaging. 2018;11(7):1035.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    • Commandeur F, Goeller M, Betancur J, Cadet S, Doris M, Chen X, et al. Deep learning for quantification of epicardial and thoracic adipose tissue from non-contrast CT. IEEE Trans Med Imaging. 2018;37(8):1835–46 A novel deep-learning approach for quantification of EAT volume. PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Rosito GA, Massaro JM, Hoffmann U, Ruberg FL, Mahabadi AA, Vasan RS, et al. Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation. 2008;117(5):605–13.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Goeller M, Achenbach S, Marwan M, Doris MK, Cadet S, Commandeur F, et al. Epicardial adipose tissue density and volume are related to subclinical atherosclerosis, inflammation and major adverse cardiac events in asymptomatic subjects. J Cardiovasc Comput Tomogr. 2018;12(1):67–73.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Uygur B, Celik O, Ozturk D, Erturk M, Otcu H, Ustabasioglu FE, et al. The relationship between location-specific epicardial adipose tissue volume and coronary atherosclerotic plaque burden in type 2 diabetic patients. Kardiol Pol. 2017;75(3):204–12.PubMedPubMedCentralGoogle Scholar
  61. 61.
    McClain J, Hsu F, Brown E, Burke G, Carr J, Harris T, et al. Pericardial adipose tissue and coronary artery calcification in the Multi-ethnic Study of Atherosclerosis (MESA). Obesity (Silver Spring). 2013;21(5):1056–63.CrossRefGoogle Scholar
  62. 62.
    Mahabadi AA, Lehmann N, Kalsch H, Robens T, Bauer M, Dykun I, et al. Association of epicardial adipose tissue with progression of coronary artery calcification is more pronounced in the early phase of atherosclerosis: results from the Heinz Nixdorf recall study. JACC Cardiovasc Imaging. 2014;7(9):909–16.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Mahabadi AA, Massaro JM, Rosito GA, Levy D, Murabito JM, Wolf PA, et al. Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham Heart Study. Eur Heart J. 2009;30(7):850–6.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Mahabadi AA, Berg MH, Lehmann N, Kalsch H, Bauer M, Kara K, et al. Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: the Heinz Nixdorf Recall Study. J Am Coll Cardiol. 2013;61(13):1388–95.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Bettencourt N, Toschke AM, Leite D, Rocha J, Carvalho M, Sampaio F, et al. Epicardial adipose tissue is an independent predictor of coronary atherosclerotic burden. Int J Cardiol. 2012;158(1):26–32.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Versteylen MO, Takx RA, Joosen IA, Nelemans PJ, Das M, Crijns HJ, et al. Epicardial adipose tissue volume as a predictor for coronary artery disease in diabetic, impaired fasting glucose, and non-diabetic patients presenting with chest pain. Eur Heart J Cardiovasc Imaging. 2012;13(6):517–23.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Ito T, Suzuki Y, Ehara M, Matsuo H, Teramoto T, Terashima M, et al. Impact of epicardial fat volume on coronary artery disease in symptomatic patients with a zero calcium score. Int J Cardiol. 2013;167(6):2852–8.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Lu MT, Park J, Ghemigian K, Mayrhofer T, Puchner SB, Liu T, et al. Epicardial and paracardial adipose tissue volume and attenuation—association with high-risk coronary plaque on computed tomographic angiography in the ROMICAT II trial. Atherosclerosis. 2016;251:47–54.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Hell MM, Ding X, Rubeaux M, Slomka P, Gransar H, Terzopoulos D, et al. Epicardial adipose tissue volume but not density is an independent predictor for myocardial ischemia. J Cardiovasc Comput Tomogr. 2016;10(2):141–9.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Tamarappoo B, Dey D, Shmilovich H, Nakazato R, Gransar H, Cheng VY, et al. Increased pericardial fat volume measured from noncontrast CT predicts myocardial ischemia by SPECT. JACC Cardiovasc Imaging. 2010;3(11):1104–12.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Mahabadi AA, Reinsch N, Lehmann N, Altenbernd J, Kalsch H, Seibel RM, et al. Association of pericoronary fat volume with atherosclerotic plaque burden in the underlying coronary artery: a segment analysis. Atherosclerosis. 2010;211(1):195–9.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Maurovich-Horvat P, Kallianos K, Engel LC, Szymonifka J, Fox CS, Hoffmann U, et al. Influence of pericoronary adipose tissue on local coronary atherosclerosis as assessed by a novel MDCT volumetric method. Atherosclerosis. 2011;219(1):151–7.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Marwan M, Hell M, Schuhback A, Gauss S, Bittner D, Pflederer T, et al. CT attenuation of pericoronary adipose tissue in normal versus atherosclerotic coronary segments as defined by intravascular ultrasound. J Comput Assist Tomogr. 2017;41(5):762–7.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Balcer B, Dykun I, Schlosser T, Forsting M, Rassaf T, Mahabadi AA. Pericoronary fat volume but not attenuation differentiates culprit lesions in patients with myocardial infarction. Atherosclerosis. 2018;276:182–8.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    • Goeller M, Achenbach S, Cadet S, Kwan AC, Commandeur F, Slomka PJ, et al. Pericoronary adipose tissue computed tomography attenuation and high-risk plaque characteristics in acute coronary syndrome compared with stable coronary artery disease. JAMA Cardiol. 2018;3(9):858–63 Demonstrates association of PCAT attenuation with high-risk plaque. PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    • Kwiecinski J, Dey D, Cadet S, Lee S-E, Otaki Y, Huynh PT, et al. Peri-coronary adipose tissue density is associated with 18F-sodium fluoride coronary uptake in stable patients with high-risk plaques. JACC Cardiovasc Imaging. 2019; Combined assessment of PCAT CT attenuation and 18F-NaF uptake, two novel imaging biomarkers. Google Scholar
  77. 77.
    •• Oikonomou EK, Marwan M, Desai MY, Mancio J, Alashi A, Hutt Centeno E, et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data. Lancet. 2018;392(10151):929–39 Progonstic validation of PCAT CT attenuation. PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    • Goeller M, Tamarappoo BK, Kwan AC, Cadet S, Commandeur F, Razipour A, et al. Relationship between changes in pericoronary adipose tissue attenuation and coronary plaque burden quantified from coronary computed tomography angiography. Eur Heart J Cardiovasc Imaging. 2019;20(6):636–43 Demonstrates the association of PCAT attenuation with coronary plaque progression. PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Hassan M, Said K, Rizk H, ElMogy F, Donya M, Houseni M, et al. Segmental peri-coronary epicardial adipose tissue volume and coronary plaque characteristics. Eur Heart J Cardiovasc Imaging. 2016;17(10):1169–77.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Hell MM, Achenbach S, Schuhbaeck A, Klinghammer L, May MS, Marwan M. CT-based analysis of pericoronary adipose tissue density: relation to cardiovascular risk factors and epicardial adipose tissue volume. J Cardiovasc Comput Tomogr. 2016;10(1):52–60.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Voros S, Rinehart S, Qian Z, Joshi P, Vazquez G, Fischer C, et al. Coronary atherosclerosis imaging by coronary CT angiography: current status, correlation with intravascular interrogation and meta-analysis. J Am Coll Cardiol Img. 2011;4(5):537–48.CrossRefGoogle Scholar
  82. 82.
    Weyer C, Foley JE, Bogardus C, Tataranni PA, Pratley RE. Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance. Diabetologia. 2000;43(12):1498–506.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Apovian CM, Bigornia S, Mott M, Meyers MR, Ulloor J, Gagua M, et al. Adipose macrophage infiltration is associated with insulin resistance and vascular endothelial dysfunction in obese subjects. Arterioscler Thromb Vasc Biol. 2008;28(9):1654–9.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Farb MG, Ganley-Leal L, Mott M, Liang Y, Ercan B, Widlansky ME, et al. Arteriolar function in visceral adipose tissue is impaired in human obesity. Arterioscler Thromb Vasc Biol. 2012;32(2):467–73.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Gealekman O, Guseva N, Hartigan C, Apotheker S, Gorgoglione M, Gurav K, et al. Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation. 2011;123(2):186–94.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Mazurek T, Kochman J, Kobylecka M, Wilimski R, Filipiak KJ, Krolicki L, et al. Inflammatory activity of pericoronary adipose tissue may affect plaque composition in patients with acute coronary syndrome without persistent ST-segment elevation: preliminary results. Kardiol Pol. 2014;72(5):410–6.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    • Mazurek T, Kobylecka M, Zielenkiewicz M, Kurek A, Kochman J, Filipiak KJ, et al. PET/CT evaluation of (18)F-FDG uptake in pericoronary adipose tissue in patients with stable coronary artery disease: Independent predictor of atherosclerotic lesions’ formation? J Nucl Cardiol. 2017;24(3):1075–84 First non-invasive imaging study to document PCAT inflammation in patients with CAD. PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Mihl C, Loeffen D, Versteylen MO, Takx RA, Nelemans PJ, Nijssen EC, et al. Automated quantification of epicardial adipose tissue (EAT) in coronary CT angiography; comparison with manual assessment and correlation with coronary artery disease. J Cardiovasc Comput Tomogr. 2014;8(3):215–21.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Baba S, Jacene HA, Engles JM, Honda H, Wahl R. CT Hounsfield units of brown adipose tissue increase with activation: preclinical and clinical studies. J Nucl Med. 2010;51:246–50.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Franssens BT, Nathoe HM, Leiner T, van der Graaf Y, Visseren FL. Relation between cardiovascular disease risk factors and epicardial adipose tissue density on cardiac computed tomography in patients at high risk of cardiovascular events. Eur J Prev Cardiol. 2017;24(6):660–70.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Abazid RM, Smettei OA, Kattea MO, Sayed S, Saqqah H, Widyan AM, et al. Relation between epicardial fat and subclinical atherosclerosis in asymptomatic individuals. J Thorac Imaging. 2017;32(6):378–82.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Dey D, Schepis T, Marwan M, Slomka PJ, Berman DS, Achenbach S. Automated three-dimensional quantification of noncalcified coronary plaque from coronary CT angiography: comparison with intravascular US. Radiology. 2010;257(2):516–22.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Nakahara T, Dweck MR, Narula N, Pisapia D, Narula J, Strauss HW. Coronary artery calcification: from mechanism to molecular imaging. JACC Cardiovasc Imaging. 2017;10(5):582–93.CrossRefGoogle Scholar
  94. 94.
    • Elnabawi YA, Oikonomou EK, Dey AK, Mancio J, Rodante JA, Aksentijevich M, et al. Association of biologic therapy with coronary inflammation in patients with psoriasis as assessed by perivascular fat attenuation indexassociation of biologic therapy with coronary inflammation in psoriasisassociation of biologic therapy with coronary inflammation in psoriasis. JAMA Cardiol. 2019; Demonstrates that PCAT CT attenuation can be modified by anti-inflammatory treatments. Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Andrew Lin
    • 1
    • 2
    • 3
  • Damini Dey
    • 3
  • Dennis T. L. Wong
    • 1
    • 2
  • Nitesh Nerlekar
    • 1
    • 2
    Email author
  1. 1.Monash Cardiovascular Research CentreMonash University and MonashHeart, Monash HealthClaytonAustralia
  2. 2.Department of MedicineMonash UniversityClaytonAustralia
  3. 3.Biomedical Imaging Research InstituteCedar-Sinai Medical CentreLos AngelesUSA

Personalised recommendations