Effects of Different Weight Loss Approaches on CVD Risk

Nutrition (P. Kris-Etherton, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Nutrition

Abstract

Purpose of Review

In this review, we aimed to answer the question as to whether deliberate weight loss can reduce cardiovascular events or improve cardiovascular risk factors and whether different methods of weight loss can have a differential effect on risk factor improvement.

Recent Findings

It would appear that deliberate weight loss reduces total mortality by 16% in obese people with risk factors including type 2 diabetes. People with type 2 diabetes who lose at least 10% of their initial body weight reduce CVD end points by 21% with dietary weight loss while the effect is greater with the greater weight loss induced by bariatric surgery with a 32% reduction in events. Mortality reduction may vary from 29 to up to 79%. Replacing some carbohydrate with protein appears to enhance weight maintenance over 12 months and in addition lowers serum triglyceride and blood pressure. A very-low-carbohydrate diet elevates LDL cholesterol when a high saturated fat “Atkins” style approach is used, but a high unsaturated fat version is safe and effective over a 12-month period and reduces medication requirements in people with type 2 diabetes. A very-low-calorie liquid diet produces excellent weight loss in the short-term, but long-term weight loss is no different to less restrictive dieting.

Summary

Weight loss lowers CVD events and total mortality and a higher protein (18–25% of energy), lower carbohydrate (< 45% of energy) diet may be superior for weight maintenance and risk factor improvement, but there are no data on event reduction.

Keywords

Cardiovascular disease Total mortality Bariatric surgery Dietary weight loss Protein Carbohydrate 

Notes

Compliance with Ethical Standards

Conflict of Interest

Peter Clifton and Jennifer Keogh declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Williamson DF, Pamuk E, Thun M, Flanders D, Byers T, Heath C. Prospective study of intentional weight loss and mortality in never-smoking overweight US white women aged 40-64 years. Am J Epidemiol. 1995;141(12):1128–41.CrossRefPubMedGoogle Scholar
  2. 2.
    Williamson DF, Pamuk E, Thun M, Flanders D, Byers T, Heath C. Prospective study of intentional weight loss and mortality in overweight white men aged 40-64 years. Am J Epidemiol. 1999;149(6):491–503.CrossRefPubMedGoogle Scholar
  3. 3.
    Harrington M, Gibson S, Cottrell RC. A review and meta-analysis of the effect of weight loss on all-cause mortality risk. Nutr Res Rev. 2009;22(1):93–108.CrossRefPubMedGoogle Scholar
  4. 4.
    •• Sheng B, Truong K, Spitler H, Zhang L, Tong X, Chen L. The long-term effects of bariatric surgery on type 2 diabetes remission, microvascular and macrovascular complications, and mortality: a systematic review and meta-analysis. Obes Surg. 2017. Doi: https://doi.org/10.1007/s11695-017-2866-4. Clear benefits of bariatric surgery on mortality.
  5. 5.
    Sjostrom L, Peltonen M, Jacobson P, Ahlin S, Andersson-Assarsson J, Anveden A, et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA. 2014;311(22):2297–304.CrossRefPubMedGoogle Scholar
  6. 6.
    Sjostrom L. Review of the key results from the Swedish Obese Subjects (SOS) trial—a prospective controlled intervention study of bariatric surgery. J Intern Med. 2013;273(3):219–34.CrossRefPubMedGoogle Scholar
  7. 7.
    Sjostrom L, Lindroos AK, Peltonen M, Torgerson J, Bouchard C, Carlsson B, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351(26):2683–93.CrossRefPubMedGoogle Scholar
  8. 8.
    Look ARG, Wing RR, Bolin P, Brancati FL, Bray GA, Clark JM, et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med. 2013;369(2):145–54.CrossRefGoogle Scholar
  9. 9.
    •• Look ARG, Gregg EW, Jakicic JM, Blackburn G, Bloomquist P, Bray GA et al. Association of the magnitude of weight loss and changes in physical fitness with long-term cardiovascular disease outcomes in overweight or obese people with type 2 diabetes: a post-hoc analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol. 2016;4(11):913–21.  https://doi.org/10.1016/s2213-8587(16)30162-0 . Dietary-induced weight loss lowers CVD events in type 2 diabetes.
  10. 10.
    •• Baum A, Scarpa J, Bruzelius E, Tamler R, Basu S, Faghmous J. Targeting weight loss interventions to reduce cardiovascular complications of type 2 diabetes: a machine learning-based post-hoc analysis of heterogeneous treatment effects in the Look AHEAD trial. Lancet Diabetes Endocrinol. 2017;5(10):808–15.  https://doi.org/10.1016/S2213-8587(17)30176-6. Volunteers in poor health do badly with weight loss. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Look ARG, Wing RR. Long-term effects of a lifestyle intervention on weight and cardiovascular risk factors in individuals with type 2 diabetes mellitus: four-year results of the Look AHEAD trial. Arch Intern Med. 2010;170(17):1566–75.Google Scholar
  12. 12.
    Pedersen LR, Olsen RH, Anholm C, Walzem RL, Fenger M, Eugen-Olsen J, et al. Weight loss is superior to exercise in improving the atherogenic lipid profile in a sedentary, overweight population with stable coronary artery disease: a randomized trial. Atherosclerosis. 2016;246:221–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Pedersen LR, Olsen RH, Jurs A, Astrup A, Chabanova E, Simonsen L, et al. A randomised trial comparing weight loss with aerobic exercise in overweight individuals with coronary artery disease: the CUT-IT trial. Eur J Prev Cardiol. 2015;22(8):1009–17.CrossRefPubMedGoogle Scholar
  14. 14.
    Nissen SE, Nicholls SJ, Wolski K, Rodes-Cabau J, Cannon CP, Deanfield JE, et al. Effect of rimonabant on progression of atherosclerosis in patients with abdominal obesity and coronary artery disease: the STRADIVARIUS randomized controlled trial. JAMA. 2008;299(13):1547–60.CrossRefPubMedGoogle Scholar
  15. 15.
    Dattilo AM, Kris-Etherton PM. Effects of weight reduction on blood lipids and lipoproteins: a meta-analysis. Am J Clin Nutr. 1992;56(2):320–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Bays HE, Toth PP, Kris-Etherton PM, Abate N, Aronne LJ, Brown WV, et al. Obesity, adiposity, and dyslipidemia: a consensus statement from the National Lipid Association. J Clin Lipidol. 2013;7(4):304–83.CrossRefPubMedGoogle Scholar
  17. 17.
    Voight BF, Peloso GM, Orho-Melander M, Frikke-Schmidt R, Barbalic M, Jensen MK, et al. Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study. Lancet. 2012;380(9841):572–80.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tall AR. Rader DJ. Circ Res: The Trials and Tribulations of CETP Inhibitors; 2017.Google Scholar
  19. 19.
    Linsel-Nitschke P, Gotz A, Erdmann J, Braenne I, Braund P, Hengstenberg C, et al. Lifelong reduction of LDL-cholesterol related to a common variant in the LDL-receptor gene decreases the risk of coronary artery disease—a Mendelian randomisation study. PLoS One. 2008;3(8):e2986.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ference BA, Robinson JG, Brook RD, Catapano AL, Chapman MJ, Neff DR, et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N Engl J Med. 2016;375(22):2144–53.CrossRefPubMedGoogle Scholar
  21. 21.
    Cullen P. Evidence that triglycerides are an independent coronary heart disease risk factor. Am J Cardiol. 2000;86(9):943–9.CrossRefPubMedGoogle Scholar
  22. 22.
    • Maki KC, Guyton JR, Orringer CE, Hamilton-Craig I, Alexander DD, Davidson MH. Triglyceride-lowering therapies reduce cardiovascular disease event risk in subjects with hypertriglyceridemia. J Clin Lipidol. 2016;10(4):905–14.  https://doi.org/10.1016/j.jacl.2016.03.008. Weight loss may be providing benefit by TG lowering. CrossRefPubMedGoogle Scholar
  23. 23.
    Jorgensen AB, Frikke-Schmidt R, Nordestgaard BG, Tybjaerg-Hansen A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med. 2014;371(1):32–41.CrossRefPubMedGoogle Scholar
  24. 24.
    •• Xu L, Borges MC, Hemani G, Lawlor DA. The role of glycaemic and lipid risk factors in mediating the effect of BMI on coronary heart disease: a two-step, two-sample Mendelian randomisation study. Diabetologia. 2017;  https://doi.org/10.1007/s00125-017-4396-y. The effect of BMI is mostly mediated through TG levels.
  25. 25.
    Stelmach-Mardas M, Walkowiak J. Dietary interventions and changes in cardio-metabolic parameters in metabolically healthy obese subjects: a systematic review with meta-analysis. Nutrients. 2016;8(8).Google Scholar
  26. 26.
    Semlitsch T, Jeitler K, Berghold A, Horvath K, Posch N, Poggenburg S, et al. Long-term effects of weight-reducing diets in people with hypertension. Cochrane Database Syst Rev. 2016;3:CD008274.PubMedGoogle Scholar
  27. 27.
    Headland M, Clifton PM, Carter S, Keogh JB. Weight-loss outcomes: a systematic review and meta-analysis of intermittent energy restriction trials lasting a minimum of 6 months. Nutrients. 2016;8(6).Google Scholar
  28. 28.
    • Davis CS, Clarke RE, Coulter SN, Rounsefell KN, Walker RE, Rauch CE, et al. Intermittent energy restriction and weight loss: a systematic review. Eur J Clin Nutr. 2016;70(3):292–9.  https://doi.org/10.1038/ejcn.2015.195. No special benefit from intermittent energy restriction. CrossRefPubMedGoogle Scholar
  29. 29.
    Seimon RV, Roekenes JA, Zibellini J, Zhu B, Gibson AA, Hills AP, et al. Do intermittent diets provide physiological benefits over continuous diets for weight loss? A systematic review of clinical trials. Mol Cell Endocrinol. 2015;418(Pt 2):153–72.CrossRefPubMedGoogle Scholar
  30. 30.
    Tinsley GM, La Bounty PM. Effects of intermittent fasting on body composition and clinical health markers in humans. Nutr Rev. 2015;73(10):661–74.CrossRefPubMedGoogle Scholar
  31. 31.
    Byrne NM, Sainsbury A, King NA, Hills AP, Wood RE. Intermittent energy restriction improves weight loss efficiency in obese men: the MATADOR study. Int J Obes 2017.Google Scholar
  32. 32.
    Conley M, Le Fevre L, Haywood C, Proietto J. Is two days of intermittent energy restriction per week a feasible weight loss approach in obese males? A randomised pilot study. Nutr Diet. 2017.Google Scholar
  33. 33.
    Alhamdan BA, Garcia-Alvarez A, Alzahrnai AH, Karanxha J, Stretchberry DR, Contrera KJ, et al. Alternate-day versus daily energy restriction diets: which is more effective for weight loss? A systematic review and meta-analysis. Obes Sci Pract. 2016;2(3):293–302.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Catenacci VA, Pan Z, Ostendorf D, Brannon S, Gozansky WS, Mattson MP, et al. A randomized pilot study comparing zero-calorie alternate-day fasting to daily caloric restriction in adults with obesity. Obesity (Silver Spring). 2016;24(9):1874–83.CrossRefGoogle Scholar
  35. 35.
    Trepanowski JF, Kroeger CM, Barnosky A, Klempel MC, Bhutani S, Hoddy KK, et al. Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults: a randomized clinical trial. JAMA Intern Med. 2017;177(7):930–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Versari D, Daghini E, Virdis A, Ghiadoni L, Taddei S. Endothelial dysfunction as a target for prevention of cardiovascular disease. Diabetes Care. 2009;32(Suppl 2):S314–21.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Gokce N, Keaney JF Jr, Hunter LM, Watkins MT, Nedeljkovic ZS, Menzoian JO, et al. Predictive value of noninvasively determined endothelial dysfunction for long-term cardiovascular events in patients with peripheral vascular disease. J Am Coll Cardiol. 2003;41(10):1769–75.CrossRefPubMedGoogle Scholar
  38. 38.
    Kitta Y, Obata JE, Nakamura T, Hirano M, Kodama Y, Fujioka D, et al. Persistent impairment of endothelial vasomotor function has a negative impact on outcome in patients with coronary artery disease. J Am Coll Cardiol. 2009;53(4):323–30.CrossRefPubMedGoogle Scholar
  39. 39.
    • Joris PJ, Zeegers MP, Mensink RP. Weight loss improves fasting flow-mediated vasodilation in adults: a meta-analysis of intervention studies. Atherosclerosis. 2015;239(1):21–30.  https://doi.org/10.1016/j.atherosclerosis.2014.12.056. Weight loss improves FMD which is a good marker of CVD risk. CrossRefPubMedGoogle Scholar
  40. 40.
    Klempel MC, Kroeger CM, Norkeviciute E, Goslawski M, Phillips SA, Varady KA. Benefit of a low-fat over high-fat diet on vascular health during alternate day fasting. Nutr Diabetes. 2013;3:e71.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Keogh JB, Grieger JA, Noakes M, Clifton PM. Flow-mediated dilatation is impaired by a high-saturated fat diet but not by a high-carbohydrate diet. Arterioscler Thromb Vasc Biol. 2005;25(6):1274–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Heymsfield SB, van Mierlo CA, van der Knaap HC, Heo M, Frier HI. Weight management using a meal replacement strategy: meta and pooling analysis from six studies. Int J Obes Relat Metab Disord. 2003;27(5):537–49.CrossRefPubMedGoogle Scholar
  43. 43.
    Vetter ML, Wadden TA, Chittams J, Diewald LK, Panigrahi E, Volger S, et al. Effect of lifestyle intervention on cardiometabolic risk factors: results of the POWER-UP trial. Int J Obes. 2013;37(Suppl 1):S19–24.CrossRefGoogle Scholar
  44. 44.
    Metzner CE, Folberth-Vogele A, Bitterlich N, Lemperle M, Schafer S, Alteheld B, et al. Effect of a conventional energy-restricted modified diet with or without meal replacement on weight loss and cardiometabolic risk profile in overweight women. Nutr Metab (Lond). 2011;8(1):64.CrossRefGoogle Scholar
  45. 45.
    St-Onge MP, Ard J, Baskin ML, Chiuve SE, Johnson HM, Kris-Etherton P, et al. Meal timing and frequency: implications for cardiovascular disease prevention: a scientific statement from the American Heart Association. Circulation. 2017;135(9):e96–e121.CrossRefPubMedGoogle Scholar
  46. 46.
    Tsai AG, Wadden TA. The evolution of very-low-calorie diets: an update and meta-analysis. Obesity (Silver Spring). 2006;14(8):1283–93.CrossRefGoogle Scholar
  47. 47.
    Johansson K, Neovius M, Hemmingsson E. Effects of anti-obesity drugs, diet, and exercise on weight-loss maintenance after a very-low-calorie diet or low-calorie diet: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr. 2014;99(1):14–23.CrossRefPubMedGoogle Scholar
  48. 48.
    Wycherley TP, Moran LJ, Clifton PM, Noakes M, Brinkworth GD, et al. Effects of energy-restricted high-protein, low-fat compared with standard-protein, low-fat diets: a meta-analysis of randomized controlled trials.Google Scholar
  49. 49.
    Santesso N, Akl EA, Bianchi M, Mente A, Mustafa R, Heels-Ansdell D, et al. Effects of higher- versus lower-protein diets on health outcomes: a systematic review and meta-analysis. Eur J Clin Nutr. 2012;66(7):780–8.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Schwingshackl L, Hoffmann G. Long-term effects of low-fat diets either low or high in protein on cardiovascular and metabolic risk factors: a systematic review and meta-analysis. Nutr J. 2013;12:48.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Chen M, Pan A, Malik VS, Hu FB. Effects of dairy intake on body weight and fat: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2012;96(4):735–47.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Dong JY, Zhang ZL, Wang PY, Qin LQ. Effects of high-protein diets on body weight, glycaemic control, blood lipids and blood pressure in type 2 diabetes: meta-analysis of randomised controlled trials. Br J Nutr. 2013;110(5):781–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Ajala O, English P, Pinkney J. Systematic review and meta-analysis of different dietary approaches to the management of type 2 diabetes. Am J Clin Nutr. 2013;97(3):505–16.CrossRefPubMedGoogle Scholar
  54. 54.
    Clifton PM, Condo D, Keogh JB. Long term weight maintenance after advice to consume low carbohydrate, higher protein diets—a systematic review and meta analysis. Nutr Metab Cardiovasc Dis. 2014;24(3):224–35.CrossRefPubMedGoogle Scholar
  55. 55.
    • Larsen TM, Dalskov SM, van Baak M, Jebb SA, Papadaki A, Pfeiffer AF, et al. Diets with high or low protein content and glycemic index for weight-loss maintenance. N Engl J Med. 2010;363(22):2102–13.  https://doi.org/10.1056/NEJMoa1007137. High protein diets useful in weight maintenance. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Engberink MF, Geleijnse JM, Bakker SJ, Larsen TM, Handjieva-Darlesnka T, Kafatos A, et al. Effect of a high-protein diet on maintenance of blood pressure levels achieved after initial weight loss: the DiOGenes randomized study. J Hum Hypertens. 2015;29(1):58–63.CrossRefPubMedGoogle Scholar
  57. 57.
    Navas-Carretero S, Holst C, Saris WH, van Baak MA, Jebb SA, Kafatos A, et al. The impact of gender and protein intake on the success of weight maintenance and associated cardiovascular risk benefits, independent of the mode of food provision: the DiOGenes randomized trial. J Am Coll Nutr. 2016;35(1):20–30.CrossRefPubMedGoogle Scholar
  58. 58.
    Aller EE, Larsen TM, Claus H, Lindroos AK, Kafatos A, Pfeiffer A, et al. Weight loss maintenance in overweight subjects on ad libitum diets with high or low protein content and glycemic index: the DIOGENES trial 12-month results. Int J Obes. 2014;38(12):1511–7.CrossRefGoogle Scholar
  59. 59.
    Brahe LK, Angquist L, Larsen LH, Vimaleswaran KS, Hager J, Viguerie N, et al. Influence of SNPs in nutrient-sensitive candidate genes and gene-diet interactions on blood lipids: the DiOGenes study. Br J Nutr. 2013;110(5):790–6.CrossRefPubMedGoogle Scholar
  60. 60.
    Hjorth MF, Ritz C, Blaak EE, Saris WH, Langin D, Poulsen SK, et al. Pretreatment fasting plasma glucose and insulin modify dietary weight loss success: results from 3 randomized clinical trials. Am J Clin Nutr. 2017;106(2):499–505.CrossRefPubMedGoogle Scholar
  61. 61.
    Kirk JK, Graves DE, Craven TE, Lipkin EW, Austin M, Margolis KL. Restricted-carbohydrate diets in patients with type 2 diabetes: a meta-analysis. J Am Diet Assoc. 2008;108(1):91–100.CrossRefPubMedGoogle Scholar
  62. 62.
    Mansoor N, Vinknes KJ, Veierod MB, Retterstol K. Effects of low-carbohydrate diets v. low-fat diets on body weight and cardiovascular risk factors: a meta-analysis of randomised controlled trials. Br J Nutr. 2016;115(3):466–79.CrossRefPubMedGoogle Scholar
  63. 63.
    Bueno NB, de Melo IS, de Oliveira SL, da Rocha Ataide T. Very-low-carbohydrate ketogenic diet v. Low-fat diet for long-term weight loss: a meta-analysis of randomised controlled trials. Br J Nutr. 2013;110(7):1178–87.CrossRefPubMedGoogle Scholar
  64. 64.
    Brinkworth GD, Noakes M, Buckley JD, Keogh JB, Clifton PM. Long-term effects of a very-low-carbohydrate weight loss diet compared with an isocaloric low-fat diet after 12 mo. Am J Clin Nutr. 2009;90(1):23–32.CrossRefPubMedGoogle Scholar
  65. 65.
    • Tay J, Luscombe-Marsh ND, Thompson CH, Noakes M, Buckley JD, Wittert GA, et al. Comparison of low- and high-carbohydrate diets for type 2 diabetes management: a randomized trial. Am J Clin Nutr. 2015;102(4):780–90.  https://doi.org/10.3945/ajcn.115.112581. Well controlled trial showing modest benefit oa very low carbohydrate diet on diabetes medication and glycemic variabality. CrossRefPubMedGoogle Scholar
  66. 66.
    Qian F, Korat AA, Malik V, Hu FB. Metabolic effects of monounsaturated fatty acid-enriched diets compared with carbohydrate or polyunsaturated fatty acid-enriched diets in patients with type 2 diabetes: a systematic review and Meta-analysis of randomized controlled trials. Diabetes Care. 2016;39(8):1448–57.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Schwingshackl L, Hoffmann G. Comparison of effects of long-term low-fat vs high-fat diets on blood lipid levels in overweight or obese patients: a systematic review and meta-analysis. J Acad Nutr Diet. 2013;113(12):1640–61.CrossRefPubMedGoogle Scholar
  68. 68.
    Naude CE, Schoonees A, Senekal M, Young T, Garner P, Volmink J. Low carbohydrate versus isoenergetic balanced diets for reducing weight and cardiovascular risk: a systematic review and meta-analysis. PLoS One. 2014;9(7):e100652.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Shai I, Spence JD, Schwarzfuchs D, Henkin Y, Parraga G, Rudich A, et al. Dietary intervention to reverse carotid atherosclerosis. Circulation. 2010;121(10):1200–8.CrossRefPubMedGoogle Scholar
  70. 70.
    Shai I, Schwarzfuchs D, Henkin Y, Shahar DR, Witkow S, Greenberg I, et al. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med. 2008;359(3):229–41.CrossRefPubMedGoogle Scholar
  71. 71.
    Qi Q, Durst R, Schwarzfuchs D, Leitersdorf E, Shpitzen S, Li Y, et al. CETP genotype and changes in lipid levels in response to weight-loss diet intervention in the POUNDS LOST and DIRECT randomized trials. J Lipid Res. 2015;56(3):713–21.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Hooper L, Abdelhamid A, Bunn D, Brown T, Summerbell CD, Skeaff CM. Effects of total fat intake on body weight. Cochrane Database Syst Rev. 2015;8:CD011834.Google Scholar
  73. 73.
    Prentice RL, Aragaki AK, Van Horn L, Thomson CA, Beresford SA, Robinson J, et al. Low-fat dietary pattern and cardiovascular disease: results from the Women's Health Initiative randomized controlled trial. Am J Clin Nutr. 2017;106(1):35–43.CrossRefPubMedGoogle Scholar
  74. 74.
    Juanola-Falgarona M, Salas-Salvado J, Ibarrola-Jurado N, Rabassa-Soler A, Diaz-Lopez A, Guasch-Ferre M, et al. Effect of the glycemic index of the diet on weight loss, modulation of satiety, inflammation, and other metabolic risk factors: a randomized controlled trial. Am J Clin Nutr. 2014;100(1):27–35.CrossRefPubMedGoogle Scholar
  75. 75.
    • Clar C, Al-Khudairy L, Loveman E, Kelly SA, Hartley L, Flowers N, et al. Low glycaemic index diets for the prevention of cardiovascular disease. Cochrane Database Syst Rev. 2017;7:CD004467.  https://doi.org/10.1002/14651858.CD004467.pub3. No effect of glycemic index on CHD risk. PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Sansom Institute, School of Pharmacy and Medical Sciences, Alliance for Research in Exercise, Nutrition and Activity (ARENA)University of South AustraliaAdelaideAustralia

Personalised recommendations