Novel Approaches for HDL-Directed Therapies

  • Jacques Genest
  • Hong Y. Choi
Nonstatin Drugs (E. deGoma, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Nonstatin Drugs


Purpose of Review

High-density lipoproteins (HDL) are thought to exert a protective role against atherosclerosis. The measurement of the cholesterol mass within HDL (HDL-C) represents a good biomarker of cardiovascular health, but HDL-C appears to be a poor therapeutic target. Here, we discuss new targets for the development of HDL-directed therapies.

Recent Findings

Among cardio-protective functions of HDL particles, the ability of HDL to remove cholesterol from cells involved in the early stages of atherosclerosis is considered one of the most important functions. This process, termed “HDL biogenesis,” is initiated by the formation of highly specialized plasma membrane micro-domains by the ATP-binding cassette transporter A1 (ABCA1) and the binding of apolipoproteins (apo) such as apoA-I, the major protein moiety of HDL, to the micro-domains. Although early strategies aimed at increasing HDL biogenesis by upregulating ABCA1 or apoA-I gene expression have not met with clinical success, recent advances in understanding transcriptional, post-transcriptional, and post-translational regulatory pathways propose new targets for the promotion of HDL biogenesis. We have recently reported that a novel apoA-I-binding protein desmocollin 1 (DSC1) prevents HDL biogenesis and that inhibition of apoA-I-DSC1 interactions promotes HDL biogenesis by stabilizing ABCA1. This new HDL regulation pathway nominates DSC1 as an attractive pharmacological target.


In the absence of clinically useful therapy to increase HDL biogenesis, finding novel targets to unlock the therapeutic potential of HDL is highly desired. Modulation of apoA-I-DSC1 interactions may be a viable strategy.


Atherosclerosis High-density lipoprotein Apolipoprotein A-I Cholesterol Desmocollin 1 ABCA1 



This work was supported by a grant from the Canadian institutes of Health Research (CIHR MOP 15042 JG).

Compliance with Ethical Standards

Conflict of Interest

Jacques Genest and Hong Y. Choi declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: Of importance •• Of major importance

  1. 1.
    Voight BF, Peloso GM, Orho-Melander M, Frikke-Schmidt R, Barbalic M, Jensen MK, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012;380(9841):572–80.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ko DT, Alter DA, Guo H, Koh M, Lau G, Austin PC, et al. High-density lipoprotein cholesterol and cause-specific mortality in individuals without previous cardiovascular conditions: the CANHEART study. J Am Coll Cardiol. 2016;68(19):2073–83.CrossRefPubMedGoogle Scholar
  3. 3.
    • Madsen CM, Varbo A, Nordestgaard BG. Extreme high high-density lipoprotein cholesterol is paradoxically associated with high mortality in men and women: two prospective cohort studies. Eur Heart J. 2017;38:2478–86. Demonstrate complex associations between HDL cholesterol levels and cardiovascular disease and mortality. CrossRefPubMedGoogle Scholar
  4. 4.
    Boekholdt SM, Arsenault BJ, Hovingh GK, Mora S, Pedersen TR, Larosa JC, et al. Levels and changes of HDL cholesterol and apolipoprotein A-I in relation to risk of cardiovascular events among statin-treated patients: a meta-analysis. Circulation. 2013;128(14):1504–12.CrossRefPubMedGoogle Scholar
  5. 5.
    Kingwell BA, Chapman MJ, Kontush A, Miller NE. HDL-targeted therapies: progress, failures and future. Nat Rev Drug Discov. 2014;13(6):445–64.CrossRefPubMedGoogle Scholar
  6. 6.
    Lincoff AM, Nicholls SJ, Riesmeyer JS, Barter PJ, Brewer HB, Fox KAA, et al. Evacetrapib and cardiovascular outcomes in high-risk vascular disease. N Engl J Med. 2017;376(20):1933–42.CrossRefPubMedGoogle Scholar
  7. 7.
    Luscher TF, Landmesser U, von Eckardstein A, Fogelman AM. High-density lipoprotein: vascular protective effects, dysfunction, and potential as therapeutic target. Circ Res. 2014;114(1):171–82.CrossRefPubMedGoogle Scholar
  8. 8.
    • Choi HY, Hafiane A, Schwertani A, Genest J. High-density lipoproteins: biology, epidemiology, and clinical management. Can J Cardiol. 2017;33(3):325–33. Athero-protective HDL functionality and therapeutic potential of HDL are reviewed. CrossRefPubMedGoogle Scholar
  9. 9.
    Marz W, Kleber ME, Scharnagl H, Speer T, Zewinger S, Ritsch A, et al. HDL cholesterol: reappraisal of its clinical relevance. Clin Res Cardiol. 2017;
  10. 10.
    Hafiane A, Genest J. HDL, atherosclerosis, and emerging therapies. Cholesterol. 2013;2013:891403.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Vaisar T, Tang C, Babenko I, Hutchins P, Wimberger J, Suffredini AF, et al. Inflammatory remodeling of the HDL proteome impairs cholesterol efflux capacity. J Lipid Res. 2015;56(8):1519–30.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kontush A, Lhomme M, Chapman MJ. Unraveling the complexities of the HDL lipidome. J Lipid Res. 2013;54(11):2950–63.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. 2011;364(2):127–35.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Rohatgi A, Khera A, Berry JD, Givens EG, Ayers CR, Wedin KE, et al. HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med. 2014;371(25):2383–93.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Khera AV, Demler OV, Adelman SJ, Collins HL, Glynn RJ, Ridker PM, et al. Cholesterol efflux capacity, high-density lipoprotein particle number, and incident cardiovascular events: an analysis from the JUPITER trial (justification for the use of statins in prevention: an intervention trial evaluating rosuvastatin). Circulation. 2017;135(25):2494–504.CrossRefPubMedGoogle Scholar
  16. 16.
    •• Qian H, Zhao X, Cao P, Lei J, Yan N, Gong X. Structure of the human lipid exporter ABCA1. Cell. 2017;169(7):1228–39 e10. Cryo-electron microscopy structure of the human ABCA1 provides insight into the action mechanism of ABCA1. CrossRefPubMedGoogle Scholar
  17. 17.
    Iatan I, Bailey D, Ruel I, Hafiane A, Campbell S, Krimbou L, et al. Membrane microdomains modulate oligomeric ABCA1 function: impact on apoAI-mediated lipid removal and phosphatidylcholine biosynthesis. J Lipid Res. 2011;52(11):2043–55.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Phillips MC. Molecular mechanisms of cellular cholesterol efflux. J Biol Chem. 2014;289(35):24020–9.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    • Segrest JP, Jones MK, Catte A, Manchekar M, Datta G, Zhang L, et al. Surface density-induced pleating of a lipid monolayer drives nascent high-density lipoprotein assembly. Structure. 2015;23(7):1214–26. Propose a mechanism for the creation of specialized plasma membrane micro-domains required for the assembly of HDL. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rosenson RS, Brewer HB Jr, Davidson WS, Fayad ZA, Fuster V, Goldstein J, et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation. 2012;125(15):1905–19.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Rubin EM, Krauss RM, Spangler EA, Verstuyft JG, Clift SM. Inhibition of early atherogenesis in transgenic mice by human apolipoprotein AI. Nature. 1991;353(6341):265–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Paszty C, Maeda N, Verstuyft J, Rubin EM. Apolipoprotein AI transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice. J Clin Invest. 1994;94(2):899–903.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zannis VI, Duka A, Drosatos K, Sanoudou D, Koukos G, Zanni E, et al. Regulation of apoA-I gene expression and prospects to increase plasma apoA-I and HDL levels. In: Schaefer EJ, editor. High density lipoproteins, dyslipidemia, and coronary heart disease. New York: Springer; 2010. p. 15–24.CrossRefGoogle Scholar
  24. 24.
    Staels B, Auwerx J. Role of PPAR in the pharmacological regulation of lipoprotein metabolism by fibrates and thiazolidinediones. Curr Pharm Des. 1997;3:1–14.Google Scholar
  25. 25.
    Khera AV, Millar JS, Ruotolo G, Wang MD, Rader DJ. Potent peroxisome proliferator-activated receptor-alpha agonist treatment increases cholesterol efflux capacity in humans with the metabolic syndrome. Eur Heart J. 2015;36(43):3020–2.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Guo Y, Fan Y, Zhang J, Lomberk GA, Zhou Z, Sun L, et al. Perhexiline activates KLF14 and reduces atherosclerosis by modulating apoA-I production. J Clin Invest. 2015;125(10):3819–30.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Picaud S, Wells C, Felletar I, Brotherton D, Martin S, Savitsky P, et al. RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain. Proc Natl Acad Sci U S A. 2013;110(49):19754–9.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    McLure KG, Gesner EM, Tsujikawa L, Kharenko OA, Attwell S, Campeau E, et al. RVX-208, an inducer of ApoA-I in humans, is a BET bromodomain antagonist. PLoS One. 2013;8(12):e83190.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Shao B, Tang C, Sinha A, Mayer PS, Davenport GD, Brot N, et al. Humans with atherosclerosis have impaired ABCA1 cholesterol efflux and enhanced high-density lipoprotein oxidation by myeloperoxidase. Circ Res. 2014;114(11):1733–42.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Huang Y, DiDonato JA, Levison BS, Schmitt D, Li L, Wu Y, et al. An abundant dysfunctional apolipoprotein A1 in human atheroma. Nat Med. 2014;20(2):193–203.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    DiDonato JA, Huang Y, Aulak KS, Even-Or O, Gerstenecker G, Gogonea V, et al. Function and distribution of apolipoprotein A1 in the artery wall are markedly distinct from those in plasma. Circulation. 2013;128(15):1644–55.CrossRefPubMedGoogle Scholar
  32. 32.
    Remaley AT, Stonik JA, Demosky SJ, Neufeld EB, Bocharov AV, Vishnyakova TG, et al. Apolipoprotein specificity for lipid efflux by the human ABCAI transporter. Biochem Biophys Res Commun. 2001;280(3):818–23.CrossRefPubMedGoogle Scholar
  33. 33.
    Hara H, Hara H, Komaba A, Yokoyama S. Alpha-helical requirements for free apolipoproteins to generate HDL and to induce cellular lipid efflux. Lipids. 1992;27(4):302–4.CrossRefPubMedGoogle Scholar
  34. 34.
    Hafiane A, Genest J. ATP binding cassette A1 (ABCA1) mediates microparticle formation during high-density lipoprotein (HDL) biogenesis. Atherosclerosis. 2017;257:90–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Nandi S, Ma L, Denis M, Karwatsky J, Li Z, Jiang XC, et al. ABCA1-mediated cholesterol efflux generates microparticles in addition to HDL through processes governed by membrane rigidity. J Lipid Res. 2009;50(3):456–66.CrossRefPubMedGoogle Scholar
  36. 36.
    Costet P, Luo Y, Wang N, Tall AR. Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J Biol Chem. 2000;275(36):28240–5.PubMedGoogle Scholar
  37. 37.
    Venkateswaran A, Laffitte BA, Joseph SB, Mak PA, Wilpitz DC, Edwards PA, et al. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha. Proc Natl Acad Sci U S A. 2000;97(22):12097–102.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hong C, Tontonoz P. Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat Rev Drug Discov. 2014;13(6):433–44.CrossRefPubMedGoogle Scholar
  39. 39.
    Chu K, Miyazaki M, Man WC, Ntambi JM. Stearoyl-coenzyme a desaturase 1 deficiency protects against hypertriglyceridemia and increases plasma high-density lipoprotein cholesterol induced by liver X receptor activation. Mol Cell Biol. 2006;26(18):6786–98.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Joseph SB, Laffitte BA, Patel PH, Watson MA, Matsukuma KE, Walczak R, et al. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J Biol Chem. 2002;277(13):11019–25.CrossRefPubMedGoogle Scholar
  41. 41.
    Talukdar S, Hillgartner FB. The mechanism mediating the activation of acetyl-coenzyme A carboxylase-alpha gene transcription by the liver X receptor agonist T0-901317. J Lipid Res. 2006;47(11):2451–61.CrossRefPubMedGoogle Scholar
  42. 42.
    Liang G, Yang J, Horton JD, Hammer RE, Goldstein JL, Brown MS. Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c. J Biol Chem. 2002;277(11):9520–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Repa JJ, Liang G, Ou J, Bashmakov Y, Lobaccaro JM, Shimomura I, et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev. 2000;14(22):2819–30.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hien HTM, Ha NC, Thom LT, Hong DD. Squalene promotes cholesterol homeostasis in macrophage and hepatocyte cells via activation of liver X receptor (LXR) alpha and beta. Biotechnol Lett. 2017;39:1101–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Canfran-Duque A, Lin CS, Goedeke L, Suarez Y, Fernandez-Hernando C. Micro-RNAs and high-density lipoprotein metabolism. Arterioscler Thromb Vasc Biol. 2016;36(6):1076–84.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Li Z, Rana TM. Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov. 2014;13(8):622–38.CrossRefPubMedGoogle Scholar
  47. 47.
    Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science. 2010;328(5985):1566–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Rayner KJ, Suarez Y, Davalos A, Parathath S, Fitzgerald ML, Tamehiro N, et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science. 2010;328(5985):1570–3.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    • Goldstein JL, Brown MS. A century of cholesterol and coronaries: from plaques to genes to statins. Cell. 2015;161(1):161–72. Outstanding review on past, present, and future studies of cholesterol. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ono K. Functions of microRNA-33a/b and microRNA therapeutics. J Cardiol. 2016;67(1):28–33.CrossRefPubMedGoogle Scholar
  51. 51.
    Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997;89(3):331–40.CrossRefPubMedGoogle Scholar
  52. 52.
    Chen G, Liang G, Ou J, Goldstein JL, Brown MS. Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver. Proc Natl Acad Sci U S A. 2004;101(31):11245–50.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kimura Y, Tamasawa N, Matsumura K, Murakami H, Yamashita M, Matsuki K, et al. Clinical significance of determining plasma MicroRNA33b in type 2 diabetic patients with dyslipidemia. J Atheroscler Thromb. 2016;23(11):1276–85.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Munehira Y, Ohnishi T, Kawamoto S, Furuya A, Shitara K, Imamura M, et al. Alpha1-syntrophin modulates turnover of ABCA1. J Biol Chem. 2004;279(15):15091–5.CrossRefPubMedGoogle Scholar
  55. 55.
    Arakawa R, Yokoyama S. Helical apolipoproteins stabilize ATP-binding cassette transporter A1 by protecting it from thiol protease-mediated degradation. J Biol Chem. 2002;277(25):22426–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Lv YC, Yin K, Fu YC, Zhang DW, Chen WJ, Tang CK. Posttranscriptional regulation of ATP-binding cassette transporter A1 in lipid metabolism. DNA Cell Biol. 2013;32(7):348–58.CrossRefPubMedGoogle Scholar
  57. 57.
    Wang L, Palme V, Rotter S, Schilcher N, Cukaj M, Wang D, et al. Piperine inhibits ABCA1 degradation and promotes cholesterol efflux from THP-1-derived macrophages. Mol Nutr Food Res. 2017;61(4).Google Scholar
  58. 58.
    Huang L, Fan B, Ma A, Shaul PW, Zhu H. Inhibition of ABCA1 protein degradation promotes HDL cholesterol efflux capacity and RCT and reduces atherosclerosis in mice. J Lipid Res. 2015;56(5):986–97.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Huang X, Dixit VM. Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res. 2016;26(4):484–98.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Ogura M, Ayaori M, Terao Y, Hisada T, Iizuka M, Takiguchi S, et al. Proteasomal inhibition promotes ATP-binding cassette transporter A1 (ABCA1) and ABCG1 expression and cholesterol efflux from macrophages in vitro and in vivo. Arterioscler Thromb Vasc Biol. 2011;31(9):1980–7.CrossRefPubMedGoogle Scholar
  61. 61.
    Mizuno T, Hayashi H, Naoi S, Sugiyama Y. Ubiquitination is associated with lysosomal degradation of cell surface-resident ATP-binding cassette transporter A1 (ABCA1) through the endosomal sorting complex required for transport (ESCRT) pathway. Hepatology. 2011;54(2):631–43.CrossRefPubMedGoogle Scholar
  62. 62.
    Hsieh V, Kim MJ, Gelissen IC, Brown AJ, Sandoval C, Hallab JC, et al. Cellular cholesterol regulates ubiquitination and degradation of the cholesterol export proteins ABCA1 and ABCG1. J Biol Chem. 2014;289(11):7524–36.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    •• Choi HY, Ruel I, Malina A, Garrod DR, Oda MN, Pelletier J, et al. Desmocollin 1 is abundantly expressed in atherosclerosis and impairs high-density lipoprotein biogenesis. Eur Heart J. 2017; Desmocollin 1 is identified as a novel apoA-I-binding protein involved in the formation of HDL.
  64. 64.
    Rajapaksha M, Kaur J, Bose M, Whittal RM, Bose HS. Cholesterol-mediated conformational changes in the steroidogenic acute regulatory protein are essential for steroidogenesis. Biochemistry. 2013;52(41):7242–53.CrossRefPubMedGoogle Scholar
  65. 65.
    Grouleff J, Irudayam SJ, Skeby KK, Schiott B. The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations. Biochim Biophys Acta. 2015;1848(9):1783–95.CrossRefPubMedGoogle Scholar
  66. 66.
    Gao Y, Zhou Y, Goldstein JL, Brown MS, Radhakrishnan A. Cholesterol-induced conformation changes in the sterol-sensing domain of the scap protein suggest feedback mechanism to control cholesterol synthesis. J Biol Chem. 2017;292:8729–37.CrossRefPubMedGoogle Scholar
  67. 67.
    Hafiane A, Genest J. High density lipoproteins: measurement techniques and potential biomarkers of cardiovascular risk. BBA Clin. 2015;3:175–88.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.The Research Institute of the McGill University Health CenterMontrealCanada

Personalised recommendations