Advertisement

New-Generation Coronary Stents: Current Data and Future Directions

  • Ankur Kalra
  • Hasan Rehman
  • Sahil Khera
  • Braghadheeswar Thyagarajan
  • Deepak L. Bhatt
  • Neal S. Kleiman
  • Robert W. Yeh
Coronary Heart Disease (S. Virani and S. Naderi, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Coronary Heart Disease

Abstract

Purpose of Review

Drug-eluting stents are the mainstay in the treatment of coronary artery disease using percutaneous coronary intervention. Innovations developed to overcome the limitations of prior generations of stents include biodegradable polymer stents, drug-eluting stents without a polymer, and bioabsorbable scaffolds. Our review briefly discusses the clinical profiles of first- and second-generation coronary stents, and provides an up-to-date overview of design, technology, and clinical safety and efficacy profiles of newer generation coronary stents discussing the relevant clinical trials in this rapidly evolving area of interventional cardiology.

Recent Findings

Drug-eluting stents have previously been shown to be superior to bare metal stents. Second-generation everolimus-eluting stents have proven to have superior outcomes compared with first-generation paclitaxel- and sirolimus-eluting stents, and the second-generation zotarolimus-eluting stents appear to be similar to the everolimus-eluting stents, though with a lesser degree of evidence. Stents with biodegradable polymers have not been shown to be superior to everolimus-eluting stents. Bioabsorbable scaffolds have not demonstrated better outcomes than current standard treatment with second-generation drug-eluting stents but have showed a concerning signal of late and very late stent thrombosis.

Summary

Everolimus-eluting stents have the most favorable outcomes in terms of safety as well as efficacy in patients undergoing percutaneous coronary intervention. Newer innovations such as biodegradable polymers and bioabsorbable scaffolds lack clinical data to replace second-generation drug-eluting stents as standard of care.

Keywords

Newer generation coronary stents Bioabsorbable stents BVS PCI Angioplasty 

Abbreviations

BMS

Bare metal stent

BVS

Bioresorbable vascular scaffold

CoCr

Cobalt-chromium

DAPT

Dual antiplatelet therapy

DES

Drug-eluting stent

ISR

In-stent restenosis

MACE

Major adverse cardiovascular event(s)

POBA

Plain old balloon angioplasty

PCI

Percutaneous coronary intervention

TLR

Target lesion revascularization

Notes

Compliance with Ethical Standards

Conflict of Interest

Ankur Kalra, Hasan Rehman, Sahil Khera, Braghadheeswar Thyagarajan, Neal S. Kleiman, and Robert W. Yeh declare that they have no conflicts of interest.

Deepak L. Bhatt discloses the following relationships—Advisory Board: Cardax, Elsevier Practice Update Cardiology, Medscape Cardiology, Regado Biosciences; Board of Directors: Boston VA Research Institute, Society of Cardiovascular Patient Care; Chair: American Heart Association Quality Oversight Committee; Data Monitoring Committees: Duke Clinical Research Institute, Harvard Clinical Research Institute, Mayo Clinic, Population Health Research Institute; Honoraria: American College of Cardiology (Senior Associate Editor, Clinical Trials and News, ACC.org), Belvoir Publications (Editor in Chief, Harvard Heart Letter), Duke Clinical Research Institute (clinical trial steering committees), Harvard Clinical Research Institute (clinical trial steering committee), HMP Communications (Editor in Chief, Journal of Invasive Cardiology), Journal of the American College of Cardiology (Guest Editor; Associate Editor), Population Health Research Institute (clinical trial steering committee), Slack Publications (Chief Medical Editor, Cardiology Today’s Intervention), Society of Cardiovascular Patient Care (Secretary/Treasurer), WebMD (CME steering committees); other: Clinical Cardiology (Deputy Editor), NCDR-ACTION Registry Steering Committee (Chair), VA CART Research and Publications Committee (Chair); Research Funding: Amarin, Amgen, AstraZeneca, Bristol-Myers Squibb, Eisai, Ethicon, Forest Laboratories, Ischemix, Lilly, Medtronic, Pfizer, Roche, Sanofi Aventis, The Medicines Company; Royalties: Elsevier (Editor, Cardiovascular Intervention: A Companion to Braunwald’s Heart Disease); and site Co-Investigator: Biotronik, Boston Scientific, St. Jude Medical; Trustee: American College of Cardiology; Unfunded Research: FlowCo, PLx Pharma, Takeda.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Fischman DL, Leon MB, Baim DS, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. N Engl J Med. 1994;331:496–501.CrossRefPubMedGoogle Scholar
  2. 2.
    Stettler C, Wandel S, Allemann S, et al. Outcomes associated with drug-eluting and bare-metal stents: a collaborative network meta-analysis. Lancet (London England). 2007;370:937–48.CrossRefGoogle Scholar
  3. 3.
    Mauri L, Hsieh W, Massaro JM, Ho KKL, D’Agostino R, Cutlip DE. Stent thrombosis in randomized clinical trials of drug-eluting stents. N Engl J Med. 2007;356:1020–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Serruys PW, Onuma Y, Garg S, et al. 5-year clinical outcomes of the ARTS II (Arterial Revascularization Therapies Study II) of the sirolimus-eluting stent in the treatment of patients with multivessel de novo coronary artery lesions. J Am Coll Cardiol. 2010;55:1093–101.CrossRefPubMedGoogle Scholar
  5. 5.
    Serruys PW, Daemen J, Morice M-C, et al. Three-year follow-up of the ARTS-II#—sirolimus-eluting stents for the treatment of patients with multivessel coronary artery disease. Euro Interv J Eur Collab Work Gr Interv Cardiol Eur Soc Cardiol. 2008;3:450–9.Google Scholar
  6. 6.
    Lemos PA, Serruys PW, van Domburg RT, et al. Unrestricted utilization of sirolimus-eluting stents compared with conventional bare stent implantation in the “real world”: the Rapamycin-Eluting Stent Evaluated At Rotterdam Cardiology Hospital (RESEARCH) registry. Circulation. 2004;109:190–5.CrossRefPubMedGoogle Scholar
  7. 7.
    • Palmerini T, Biondi-Zoccai G, Della Riva D, et al. Stent thrombosis with drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. Lancet (London England). 2012;379:1393–402. Meta-analysis that compared stent thrombosis in drug-eluting and bare metal stents.CrossRefGoogle Scholar
  8. 8.
    •• Bangalore S, Toklu B, Amoroso N, Fusaro M, Kumar S, Hannan EL, et al. Bare metal stents, durable polymer drug eluting stents, and biodegradable polymer drug eluting stents for coronary artery disease: mixed treatment comparison meta-analysis. BMJ. 2013;347:f6625. Comprehensive meta-analysis that compared safety and efficacy outcomes between bare metal and drug-eluting stents and stents with biodegradable polymers.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bavry AA, Kumbhani DJ, Helton TJ, Borek PP, Mood GR, Bhatt DL. Late thrombosis of drug-eluting stents: a meta-analysis of randomized clinical trials. Am J Med. 2006;119:1056–61.CrossRefPubMedGoogle Scholar
  10. 10.
    Luscher TF, Steffel J, Eberli FR, Joner M, Nakazawa G, Tanner FC, et al. Drug-eluting stent and coronary thrombosis: biological mechanisms and clinical implications. Circulation. 2007;115:1051–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Finn AV, Nakazawa G, Joner M, Kolodgie FD, Mont EK, Gold HK, et al. Vascular responses to drug eluting stents: importance of delayed healing. Arterioscler Thromb Vasc Biol. 2007;27:1500–10.CrossRefPubMedGoogle Scholar
  12. 12.
    Hossainy S, Prabhu S. A mathematical model for predicting drug release from a biodurable drug-eluting stent coating. J Biomed Mater Res A. 2008;87:487–93.CrossRefPubMedGoogle Scholar
  13. 13.
    Kereiakes DJ, Cox DA, Hermiller JB, Midei MG, Bachinsky WB, Nukta ED, et al. Usefulness of a cobalt chromium coronary stent alloy. Am J Cardiol. 2003;92:463–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Pache J, Kastrati A, Mehilli J, et al. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial. J Am Coll Cardiol. 2003;41:1283–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Wiemer M, Serruys PW, Miquel-Hebert K, Neumann F-J, Piek JJ, Grube E, et al. Five-year long-term clinical follow-up of the XIENCE V everolimus eluting coronary stent system in the treatment of patients with de novo coronary artery lesions: the SPIRIT FIRST trial. Catheter Cardiovasc Interv. 2010;75:997–1003.PubMedGoogle Scholar
  16. 16.
    Stone GW, Midei M, Newman W, et al. Randomized comparison of everolimus-eluting and paclitaxel-eluting stents: two-year clinical follow-up from the Clinical Evaluation of the Xience V Everolimus Eluting Coronary Stent System in the Treatment of Patients with de novo Native Coronary Artery Lesions (SPIRIT) III trial. Circulation. 2009;119:680–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Serruys PW, Ruygrok P, Neuzner J, et al. A randomised comparison of an everolimus-eluting coronary stent with a paclitaxel-eluting coronary stent:the SPIRIT II trial. Euro Interv J Eur Collab Work Gr Interv Cardiol Eur Soc Cardiol. 2006;2:286–94.Google Scholar
  18. 18.
    Stone GW, Rizvi A, Newman W, et al. Everolimus-eluting versus paclitaxel-eluting stents in coronary artery disease. N Engl J Med. 2010;362:1663–74.CrossRefPubMedGoogle Scholar
  19. 19.
    Planer D, Smits PC, Kereiakes DJ, Kedhi E, Fahy M, Xu K, et al. Comparison of everolimus- and paclitaxel-eluting stents in patients with acute and stable coronary syndromes: pooled results from the SPIRIT (a clinical evaluation of the XIENCE V everolimus eluting coronary stent system) and COMPARE (a trial of everolimus-eluting stents and paclitaxel-eluting stents for coronary revascularization in daily practice) trials. JACC Cardiovasc Interv. 2011;4:1104–15.CrossRefPubMedGoogle Scholar
  20. 20.
    Onuma Y, Miquel-Hebert K, Serruys PW. Five-year long-term clinical follow-up of the XIENCE V everolimus-eluting coronary stent system in the treatment of patients with de novo coronary artery disease: the SPIRIT II trial. Euro Interv J Eur Collab Work Gr Interv Cardiol Eur Soc Cardiol. 2013;8:1047–51.Google Scholar
  21. 21.
    Gada H, Kirtane AJ, Newman W, et al. 5-year results of a randomized comparison of XIENCE V everolimus-eluting and TAXUS paclitaxel-eluting stents: final results from the SPIRIT III trial (clinical evaluation of the XIENCE V everolimus eluting coronary stent system in the treatment of patient. JACC Cardiovasc Interv. 2013;6:1263–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Stone GW, Rizvi A, Sudhir K, et al. Randomized comparison of everolimus- and paclitaxel-eluting stents. 2-year follow-up from the SPIRIT (clinical evaluation of the XIENCE V everolimus eluting coronary stent system) IV trial. J Am Coll Cardiol. 2011;58:19–25.CrossRefPubMedGoogle Scholar
  23. 23.
    Park KW, Chae I-H, Lim D-S, et al. Everolimus-eluting versus sirolimus-eluting stents in patients undergoing percutaneous coronary intervention: the EXCELLENT (Efficacy of Xience/Promus Versus Cypher to Reduce Late Loss After Stenting) randomized trial. J Am Coll Cardiol. 2011;58:1844–54.CrossRefPubMedGoogle Scholar
  24. 24.
    Serruys PW, Silber S, Garg S, et al. Comparison of zotarolimus-eluting and everolimus-eluting coronary stents. N Engl J Med. 2010;363:136–46.CrossRefPubMedGoogle Scholar
  25. 25.
    Iqbal J, Serruys PW, Silber S, Kelbaek H, Richardt G, Morel M-A, et al. Comparison of zotarolimus- and everolimus-eluting coronary stents. Circ Cardiovasc Interv. 2015;8:e002230.CrossRefPubMedGoogle Scholar
  26. 26.
    von Birgelen C, Basalus MWZ, Tandjung K, et al. A randomized controlled trial in second-generation zotarolimus-eluting resolute stents versus everolimus-eluting xience V stents in real-world patients the TWENTE trial. J Am Coll Cardiol. 2012;59:1350–61.CrossRefGoogle Scholar
  27. 27.
    Lee JM, Youn T-J, Park JJ, Oh I-Y, Yoon C-H, Suh J-W, et al. Comparison of 9-month angiographic outcomes of resolute zotarolimus-eluting and everolimus-eluting stents in a real world setting of coronary intervention in Korea. BMC Cardiovasc Disord. 2013;13:65.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Stone GW, Teirstein PS, Meredith IT, Farah B, Dubois CL, Feldman RL, et al. A prospective, randomized evaluation of a novel everolimus-eluting coronary stent: the PLATINUM (a Prospective, Randomized, Multicenter Trial to Assess an Everolimus-Eluting Coronary Stent System [PROMUS element] for the treatment of up to two de novo coronary artery lesions) trial. J Am Coll Cardiol. 2011;57:1700–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Meredith IT, Teirstein PS, Bouchard A, Carrie D, Mollmann H, Oldroyd KG, et al. Three-year results comparing platinum-chromium PROMUS element and cobalt-chromium XIENCE V everolimus-eluting stents in de novo coronary artery narrowing (from the PLATINUM Trial). Am J Cardiol. 2014;113:1117–23.CrossRefPubMedGoogle Scholar
  30. 30.
    Stone G, Teirstein P, Meredith I, Farah B, Dubois C, Feldman R, et al. Final five-year results of the platinum randomized trial comparing platinum chromium promus element and cobalt chromium promus/xience V everolimus-eluting stents in workhorse lesions. J Am Coll Cardiol. 2015;65:A1733.CrossRefGoogle Scholar
  31. 31.
    • Bangalore S, Kumar S, Fusaro M, Amoroso N, Attubato MJ, Feit F, et al. Short- and long-term outcomes with drug-eluting and bare-metal coronary stents: a mixed-treatment comparison analysis of 117 762 patient-years of follow-up from randomized trials. Circulation. 2012;125:2873–91. Meta-analysis that compared safety and efficacy outcomes between bare metal and drug-eluting stents.CrossRefPubMedGoogle Scholar
  32. 32.
    Park S-J, Kang S-J, Virmani R, Nakano M, Ueda Y. In-stent neoatherosclerosis: a final common pathway of late stent failure. J Am Coll Cardiol. 2012;59:2051–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Virmani R, Farb A. Pathology of in-stent restenosis. Curr Opin Lipidol. 1999;10:499–506.CrossRefPubMedGoogle Scholar
  34. 34.
    Valgimigli M, Campo G, Monti M, et al. Short- versus long-term duration of dual-antiplatelet therapy after coronary stenting: a randomized multicenter trial. Circulation. 2012;125:2015–26.CrossRefPubMedGoogle Scholar
  35. 35.
    Windecker S, Kolh P, et al (2014) 2014 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J.Google Scholar
  36. 36.
    Bonaa KH, Mannsverk J, Wiseth R, et al. Drug-eluting or bare-metal stents for coronary artery disease. N Engl J Med. 2016;375:1242–52.CrossRefPubMedGoogle Scholar
  37. 37.
    Sammel AM, Chen D, Jepson N. New generation coronary stent technology—is the future biodegradable? Hear Lung Circ. 2013;22:495–506.CrossRefGoogle Scholar
  38. 38.
    Windecker S, Serruys PW, Wandel S, et al. Biolimus-eluting stent with biodegradable polymer versus sirolimus-eluting stent with durable polymer for coronary revascularisation (LEADERS): a randomised non-inferiority trial. Lancet (London England). 2008;372:1163–73.CrossRefGoogle Scholar
  39. 39.
    Raber L, Kelbaek H, Ostojic M, et al. Effect of biolimus-eluting stents with biodegradable polymer vs bare-metal stents on cardiovascular events among patients with acute myocardial infarction: the COMFORTABLE AMI randomized trial. JAMA. 2012;308:777–87.CrossRefPubMedGoogle Scholar
  40. 40.
    Natsuaki M, Kozuma K, Morimoto T, et al. Biodegradable polymer biolimus-eluting stent versus durable polymer everolimus-eluting stent: a randomized, controlled, noninferiority trial. J Am Coll Cardiol. 2013;62:181–90.CrossRefPubMedGoogle Scholar
  41. 41.
    Haude M, Lee SWL, Worthley SG, et al. The REMEDEE trial: a randomized comparison of a combination sirolimus-eluting endothelial progenitor cell capture stent with a paclitaxel-eluting stent. JACC Cardiovasc Interv. 2013;6:334–43.CrossRefPubMedGoogle Scholar
  42. 42.
    Lemos PA, Moulin B, Perin MA, et al. Late clinical outcomes after implantation of drug-eluting stents coated with biodegradable polymers: 3-year follow-up of the PAINT randomised trial. Euro Interv J Eur Collab Work Gr Interv Cardiol Eur Soc Cardiol. 2012;8:117–9.Google Scholar
  43. 43.
    Marchini JF, Gomes WF, Moulin B, et al. Very late outcomes of drug-eluting stents coated with biodegradable polymers: insights from the 5-year follow-up of the randomized PAINT trial. Cardiovasc Diagn Ther. 2014;4:480–6.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Windecker S, Haude M, Neumann F-J, et al. Comparison of a novel biodegradable polymer sirolimus-eluting stent with a durable polymer everolimus-eluting stent: results of the randomized BIOFLOW-II trial. Circ Cardiovasc Interv. 2015;8:e001441.CrossRefPubMedGoogle Scholar
  45. 45.
    Han Y-L, Zhang L, Yang L-X, et al. A new generation of biodegradable polymer-coated sirolimus-eluting stents for the treatment of coronary artery disease: final 5-year clinical outcomes from the CREATE study. Euro Interv J Eur Collab Work Gr Interv Cardiol Eur Soc Cardiol. 2012;8:815–22.Google Scholar
  46. 46.
    Xu B, Gao R, Yang Y, et al. Biodegradable polymer-based sirolimus-eluting stents with differing elution and absorption kinetics: the PANDA III trial. J Am Coll Cardiol. 2016;67:2249–58.CrossRefPubMedGoogle Scholar
  47. 47.
    Kereiakes DJ, Meredith IT, Windecker S, et al (2015) Efficacy and safety of a novel bioabsorbable polymer-coated, everolimus-eluting coronary stent: the EVOLVE II randomized trial. Circ Cardiovasc Interv.doi:  10.1161/CIRCINTERVENTIONS.114.002372
  48. 48.
    Urban P, Meredith IT, Abizaid A, et al. Polymer-free drug-coated coronary stents in patients at high bleeding risk. N Engl J Med. 2015;373:2038–47.CrossRefPubMedGoogle Scholar
  49. 49.
    Costa JRJ, Abizaid A, Costa R, et al. 1-year results of the hydroxyapatite polymer-free sirolimus-eluting stent for the treatment of single de novo coronary lesions: the VESTASYNC I trial. JACC Cardiovasc Interv. 2009;2:422–7.CrossRefPubMedGoogle Scholar
  50. 50.
    Costa JRJ, Oliveira BA, Abizaid A, Costa R, Perin M, Abizaid A, et al. Clinical, angiographic, and intravascular ultrasound results of the VestSaync II trial. Catheter Cardiovasc Interv. 2014;84:1073–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Mehilli J, Kastrati A, Wessely R, Dibra A, Hausleiter J, Jaschke B, et al. Randomized trial of a nonpolymer-based rapamycin-eluting stent versus a polymer-based paclitaxel-eluting stent for the reduction of late lumen loss. Circulation. 2006;113:273–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Byrne RA, Mehilli J, Iijima R, Schulz S, Pache J, Seyfarth M, et al. A polymer-free dual drug-eluting stent in patients with coronary artery disease: a randomized trial vs. polymer-based drug-eluting stents. Eur Heart J. 2009;30:923–31.CrossRefPubMedGoogle Scholar
  53. 53.
    Massberg S, Byrne RA, Kastrati A, et al. Polymer-free sirolimus- and probucol-eluting versus new generation zotarolimus-eluting stents in coronary artery disease: the intracoronary stenting and angiographic results: test efficacy of sirolimus- and probucol-eluting versus zotarolimus-eluting stents (ISAR-TEST 5) trial. Circulation. 2011;124:624–32.CrossRefPubMedGoogle Scholar
  54. 54.
    Kufner S, Sorges J, Mehilli J, et al. Randomized trial of polymer-free sirolimus- and probucol-eluting stents versus durable polymer zotarolimus-eluting stents5-year results of the ISAR-TEST-5 trial. JACC Cardiovasc Interv. 2016;9:784–92.CrossRefPubMedGoogle Scholar
  55. 55.
    Mintz GS, Popma JJ, Pichard AD, Kent KM, Satler LF, Chiu Wong S, et al. Arterial remodeling after coronary angioplasty. Circulation. 1996;94:35–43.CrossRefPubMedGoogle Scholar
  56. 56.
    Nakazawa G, Finn AV, Kolodgie FD, Virmani R. A review of current devices and a look at new technology: drug-eluting stents. Expert Rev Med Devices. 2009;6:33–42.CrossRefPubMedGoogle Scholar
  57. 57.
  58. 58.
    Nishio S, Kosuga K, Igaki K, et al. Long-Term (>10 Years) clinical outcomes of first-in-human biodegradable poly-l-lactic acid coronary stents: Igaki-Tamai stents. Circulation. 2012;125:2343–53.CrossRefPubMedGoogle Scholar
  59. 59.
    Werner M, Micari A, Cioppa A, Vadala G, Schmidt A, Sievert H, et al. Evaluation of the biodegradable peripheral Igaki-Tamai stent in the treatment of de novo lesions in the superficial femoral artery: the GAIA study. JACC Cardiovasc Interv. 2014;7:305–12.CrossRefPubMedGoogle Scholar
  60. 60.
    Onuma Y, Dudek D, Thuesen L, Webster M, Nieman K, Garcia-Garcia HM, et al. Five-year clinical and functional multislice computed tomography angiographic results after coronary implantation of the fully resorbable polymeric everolimus-eluting scaffold in patients with de novo coronary artery disease: the ABSORB cohort A trial. JACC Cardiovasc Interv. 2013;6:999–1009.CrossRefPubMedGoogle Scholar
  61. 61.
    Onuma Y, Serruys PW, Gomez J, et al. Comparison of in vivo acute stent recoil between the bioresorbable everolimus-eluting coronary scaffolds (revision 1.0 and 1.1) and the metallic everolimus-eluting stent. Catheter Cardiovasc Interv. 2011;78:3–12.CrossRefPubMedGoogle Scholar
  62. 62.
    Diletti R, Serruys PW, Farooq V, et al. ABSORB II randomized controlled trial: a clinical evaluation to compare the safety, efficacy, and performance of the Absorb everolimus-eluting bioresorbable vascular scaffold system against the XIENCE everolimus-eluting coronary stent system in the treatment of subjects with ischemic heart disease caused by de novo native coronary artery lesions: rationale and study design. Am Heart J. 2012;164:654–63.CrossRefPubMedGoogle Scholar
  63. 63.
    Abizaid A, Ribamar Costa JJ, Bartorelli AL, et al. The ABSORB EXTEND study: preliminary report of the twelve-month clinical outcomes in the first 512 patients enrolled. Euro Interv J Eur Collab Work Gr Interv Cardiol Eur Soc Cardiol. 2015;10:1396–401.Google Scholar
  64. 64.
    • Ellis SG, Kereiakes DJ, Metzger DC, et al (2015) Everolimus-eluting bioresorbable scaffolds for coronary artery disease. N Engl J Med 373:1905–1915. Recent data showing outcomes of bioresorbable stents compared to Xience V® everolimus-eluting stents. Google Scholar
  65. 65.
    Bangalore S, Toklu B, Bhatt DL. Outcomes with bioabsorbable vascular scaffolds versus everolimus eluting stents: Insights from randomized trials. Int J Cardiol. 2016;212:214–22.CrossRefPubMedGoogle Scholar
  66. 66.
    Toyota T, Morimoto T, Shiomi H, Yoshikawa Y, Yaku H, Yamashita Y, et al. Very late scaffold thrombosis of bioresorbable vascular scaffold: systematic review and a meta-analysis. JACC Cardiovasc Interv. 2017;10:27–37.CrossRefPubMedGoogle Scholar
  67. 67.
    Gogas BD, King 3rd SB, Samady H. Bioresorbable polymeric scaffolds for coronary revascularization: lessons learnt from ABSORB III, ABSORB China, and ABSORB Japan. Glob Cardiol Sci Pract. 2015;2015:62.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    REVA Medical Inc. Safety Study of a Bioresorbable Coronary Stent (RESTORE). https://clinicaltrials.gov/ct2/show/NCT01262703.
  69. 69.
    Durand E, Lemitre M, Couty L, Sharkawi T, Brasselet C, Vert M, et al. Adjusting a polymer formulation for an optimal bioresorbable stent: a 6-month follow-up study. Euro Interv J Eur Collab Work Gr Interv Cardiol Eur Soc Cardiol. 2012;8:242–9.Google Scholar
  70. 70.
    Abizaid A, Costa RA, Schofer J, et al. Serial multimodality imaging and 2-year clinical outcomes of the novel desolve novolimus-eluting bioresorbable coronary scaffold system for the treatment of single de novo coronary lesions. JACC Cardiovasc Interv. 2016;9:565–74.CrossRefPubMedGoogle Scholar
  71. 71.
    Jabara R, Pendyala L, Geva S, Chen J, Chronos N, Robinson K. Novel fully bioabsorbable salicylate-based sirolimus-eluting stent. Euro Interv J Eur Collab Work Gr Interv Cardiol Eur Soc Cardiol. 2009;5(Suppl F):F58–64.Google Scholar
  72. 72.
    Jabara R, Chronos N, Robinson K. Novel bioabsorbable salicylate-based polymer as a drug-eluting stent coating. Catheter Cardiovasc Interv. 2008;72:186–94.CrossRefPubMedGoogle Scholar
  73. 73.
    Campos CM, Muramatsu T, Iqbal J, Zhang Y-J, Onuma Y, Garcia-Garcia HM, et al. Bioresorbable drug-eluting magnesium-alloy scaffold for treatment of coronary artery disease. Int J Mol Sci. 2013;14:24492–500.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Bouchi YH, Gogas BD. Biocorrodible metals for coronary revascularization: lessons from PROGRESS-AMS, BIOSOLVE-I, and BIOSOLVE-II. Glob Cardiol Sci Pract. 2015;2015:63.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Haude M, Erbel R, Erne P, et al. Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial. Lancet (London England). 2013;381:836–44.CrossRefGoogle Scholar
  76. 76.
    Haude M, Ince H, Abizaid A, et al. Sustained safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de novo coronary lesions: 12-month clinical results and angiographic findings of the BIOSOLVE-II first-in-man trial. Eur Heart J. 2016;37(35):2701–9.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Peuster M, Wohlsein P, Brugmann M, et al. A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal—results 6-18 months after implantation into New Zealand white rabbits. Heart. 2001;86(5):563–9.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Ankur Kalra
    • 1
    • 2
    • 3
  • Hasan Rehman
    • 1
  • Sahil Khera
    • 4
  • Braghadheeswar Thyagarajan
    • 5
  • Deepak L. Bhatt
    • 6
  • Neal S. Kleiman
    • 1
    • 2
  • Robert W. Yeh
    • 7
  1. 1.Houston Methodist DeBakey Heart and Vascular CenterHouston Methodist HospitalHoustonUSA
  2. 2.Weill Cornell Medical CollegeNew YorkUSA
  3. 3.Safety, Quality, Informatics and Leadership Program, 2016-17Harvard Medical SchoolBostonUSA
  4. 4.New York Medical CollegeWhite PlainsUSA
  5. 5.Department of Internal MedicineMonmouth Medical CenterLong BranchUSA
  6. 6.Brigham and Women’s Heart and Vascular CenterHarvard Medical SchoolBostonUSA
  7. 7.The Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUSA

Personalised recommendations