Advertisement

Novel Anti-glycemic Drugs and Reduction of Cardiovascular Risk in Diabetes: Expectations Realized, Promises Unmet

  • James H. FloryEmail author
  • Jenny K. Ukena
  • James S. Floyd
Clinical Trials and Their Interpretations (J. Kizer, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Clinical Trials and Their Interpretations

Abstract

Purpose of Review

The purpose is to review evidence on cardiovascular risks and benefits of new treatments for type 2 diabetes mellitus.

Recent Findings

In response to guidance issued by the Food and Drug Administration, thousands of patients have been enrolled in large randomized trials evaluating the cardiovascular effects of the three newest diabetes drug classes: glucagon-like peptide-1 (GLP-1) receptor agonists, sodium glucose cotransporter 2 (SGLT-2) inhibitors, and dipeptidyl peptidase-4 (DPP-4) inhibitors. Two studies of GLP-1 receptor agonists—one of liraglutide and one of semaglutide—have shown cardiovascular benefit relative to placebo, and one study of the SGLT-2 inhibitor empagliflozin has shown benefit. The other published cardiovascular outcome studies of the newest drug classes have generally supported safety, apart from an as-yet unresolved safety concern about increased rates of heart failure with DPP-4 inhibitors. Recent research suggests the thiazolidinedione pioglitazone may have beneficial effects on some cardiovascular outcomes as well, but these are counterbalanced by a known increase of the risk of heart failure with this drug. In general, more prospective randomized trial data is now available regarding the cardiovascular effects of the newer diabetes drugs than on the older drug classes.

Summary

New evidence suggests that the newest diabetes drugs are safe from a cardiovascular perspective. Evidence on benefit from at least some members of the GLP-1 receptor agonist and SGLT-2 inhibitor classes is encouraging but not yet decisive.

Keywords

Type 2 diabetes mellitus Novel anti-glycemic drugs Cardiovascular risk Cardiovascular outcomes Cardiovascular safety 

Notes

Compliance with Ethical Standards

Conflict of Interest

James H. Flory, Jenny K. Ukena, and James S. Floyd declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Go A, Mozaffarian D, Roger V, et al. Executive summary: heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation. 2013;127(1):143–52.CrossRefPubMedGoogle Scholar
  2. 2.
    Standards of Medical Care in Diabetes—2016. Diabetes Care S52–S59.Google Scholar
  3. 3.
    Hiatt W, Kaul S, Smith R. The cardiovascular safety of diabetes drugs—insights from the rosiglitazone experience. N Engl J Med. 2013;369(14):1285–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Smith R, Goldfine A, Hiatt W. Evaluating the cardiovascular safety of new medications for type 2 diabetes: time to reassess? Diabetes Care. 2016;39(5):738–42.CrossRefPubMedGoogle Scholar
  5. 5.
    Ingelfinger J, Rosen C. Cardiac and renovascular complications in type 2 diabetes—is there hope? N Engl J Med. 2016;375(4):380–2.CrossRefPubMedGoogle Scholar
  6. 6.
    Lipska K, Krumholz H. Comparing diabetes medications: where do we set the bar? JAMA Intern Med. 2014;174(3):317–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Association AD. Approaches to glycemic treatment. Sec. 7. In: Standards of medical care in diabetes—2016. Diabetes Care 2016;39 Suppl. 1: S52–S59.Google Scholar
  8. 8.
    Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998;352(9131):837–53Google Scholar
  9. 9.
    Holman R, Paul S, Bethel M, Matthews D, Neil H. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89.CrossRefPubMedGoogle Scholar
  10. 10.
    Hong J, Zhang Y, Lai S, et al. Effects of metformin versus glipizide on cardiovascular outcomes in patients with type 2 diabetes and coronary artery disease. Diabetes Care. 2013;36(5):1304–11.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hampp C, Borders-Hemphill V, Moeny D, Wysowski D. Use of antidiabetic drugs in the U.S., 2003–2012. Diabetes Care. 2014;37(5):1367–74.CrossRefPubMedGoogle Scholar
  12. 12.
    Nathan D. Diabetes: advances in diagnosis and treatment. JAMA. 2015;314(10):1052–62.CrossRefPubMedGoogle Scholar
  13. 13.
    Goldner M, Knatterud G, Prout T. Effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. JAMA. 1971;218(9):1400–10.CrossRefPubMedGoogle Scholar
  14. 14.
    Hong J, Zhang Y, Lai S, et al. Effects of metformin versus glipizide on cardiovascular outcomes in patients with type 2 diabetes and coronary artery disease. Diabetes Care. 2013;36(5):1304–11.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Monami M, Genovese S, Mannucci E. Cardiovascular safety of sulfonylureas: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2013;15(10):938–53.CrossRefPubMedGoogle Scholar
  16. 16.
    Phung O, Schwartzman E, Allen R, Engel S, Rajpathak S. Sulfonylureas and risk of cardiovascular disease: systematic review and meta-analysis. Diabet Med. 2013;30(10):1160–71.CrossRefPubMedGoogle Scholar
  17. 17.
    Ou S, Shih C, Chao P, et al. Effects on clinical outcomes of adding dipeptidyl peptidase-4 inhibitors versus sulfonylureas to metformin therapy in patients with type 2 diabetes mellitus. Ann Intern Med. 2015;163(9):663–72.CrossRefPubMedGoogle Scholar
  18. 18.
    Morgan C, Mukherjee J, Jenkins-Jones S, Holden S, Currie C. Combination therapy with metformin plus sulfonylureas versus metformin plus DPP-4 inhibitors: association with major adverse cardiovascular events and all-cause mortality. Diabetes Obes Metab. 2014;16(10):977–83.CrossRefPubMedGoogle Scholar
  19. 19.
    Cryer P. Mechanisms of hypoglycemia-associated autonomic failure in diabetes. N Engl J Med. 2013;369(4):362–72.CrossRefPubMedGoogle Scholar
  20. 20.
    Wright R, Frier B. Vascular disease and diabetes: is hypoglycemia an aggravating factor? Diabetes Metab Res Rev. 2008;24(5):353–63.CrossRefPubMedGoogle Scholar
  21. 21.
    Desouza C, Bolli G, Fonesca V. Hypoglycemia, diabetes, and cardiovascular events. Diabetes Care. 2010;33(6):1389–94.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ashcroft F, Gribble F. Tissue-specific effects of sulfonylureas: lessons from studies of cloned K(ATP) channels. J Diabetes Complicat. 2000;14(4):192–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Zunkler B. Human ether-a-go-go-related (HERG) gene and ATP-sensitive potassium channels as targets for adverse drug effects. Pharmacol Ther. 2006;112(1):12–37.CrossRefPubMedGoogle Scholar
  24. 24.
    Hattersley A, Thorens B. Type 2 diabetes, SGLT2 inhibitors, and glucose secretion. N Engl J Med. 2015;373:974–97.CrossRefPubMedGoogle Scholar
  25. 25.
    Brunton S. The potential role of sodium glucose co-transporter 2 inhibitors in the early treatment of type 2 diabetes mellitus. Int J Clin Pract. 2015;69(10):1071–87.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Inzucchi S, Zinman B, Wanner C, et al. SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials. Diab Vasc Dis Res. 2015;12(2):90–100.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ceriello A, Genovese S, Mannucci E, Gronda E. Understanding EMPA-REG OUTCOME. Lancet Diabetes Endocrinol. 2015;3(12):929–30.CrossRefPubMedGoogle Scholar
  28. 28.
    Mudaliar S, Alloju S, Henry R. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis. Diabetes Care. 2016;39(7):1115–22.CrossRefPubMedGoogle Scholar
  29. 29.
    Vasilakou D, Karagiannis T, Athanasiadou E, et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013;159(4):262–74.CrossRefPubMedGoogle Scholar
  30. 30.
    •• Zinman B, Wanner C, Lachin J, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28. Recent cardiovascular outcome study showing evidence of cardiovascular benefit from a new antidiabetic drug.CrossRefPubMedGoogle Scholar
  31. 31.
    Perseghin G, Solini A. The EMPA-REG outcome study: critical appraisal and potential clinical implications. Cardiovascular Diabetol 2016;15(85).Google Scholar
  32. 32.
    Neumiller J. Incretin-based therapies. Med Clin N Am. 2015;99(1):107–29.CrossRefPubMedGoogle Scholar
  33. 33.
    Vergès B, Bonnard C, Renard E. Beyond glucose lowering: glucagon-like peptide-1 receptor agonists, body weight and the cardiovascular system. Diabetes Metab. 2011;37(6):477–88.CrossRefPubMedGoogle Scholar
  34. 34.
    Poornima I, Brown S, Bhashyam S, Parikh P, Bolukoglu H, Shannon R. Chronic glucagon-like peptide-1 infusion sustains left ventricular systolic function and prolongs survival in the spontaneously hypertensive, heart failure-prone rat. Circ Heart Fail. 2008;1(3):153–60.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Treiman M, Elvekjaer M, Engstrøm T, Jensen J. Glucagon-like peptide 1—a cardiologic dimension. Trends Cardiovasc Med. 2010;20(1):8–12.CrossRefPubMedGoogle Scholar
  36. 36.
    Sokos G, Nikolaidis L, Mankad S, Elahi D, Shannon R. Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail. 2006;12(9):694–9.CrossRefPubMedGoogle Scholar
  37. 37.
    •• Marso S, Daniels G, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22. Recent cardiovascular outcome study showing evidence of cardiovascular benefit from a new antidiabetic drug.CrossRefPubMedGoogle Scholar
  38. 38.
    •• Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016. Recent cardiovascular outcome study showing evidence of cardiovascular benefit from a new antidiabetic drug.Google Scholar
  39. 39.
    Pfeffer M, Claggett B, Diaz R, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015;373(23):2247–57.CrossRefPubMedGoogle Scholar
  40. 40.
    Ban K, Noyan-Ashraf M, Hoefer J, Bolz S, Drucker D, Husain M. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation. 2008;117(18):2340–50.CrossRefPubMedGoogle Scholar
  41. 41.
    White W, Cannon C, Heller S, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369(14):1327–35.CrossRefPubMedGoogle Scholar
  42. 42.
    Green J, Bethel M, Armstrong P, et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;373(3):232–42.CrossRefPubMedGoogle Scholar
  43. 43.
    Scirica B, Bhatt D, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369(14):1317–26.CrossRefPubMedGoogle Scholar
  44. 44.
    Maruther N, Tseng E, Hutfless S, et al. Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2016;164(11):740–51.CrossRefGoogle Scholar
  45. 45.
    Gilbert R, Krum H. Heart failure in diabetes: effects of anti-hyperglycaemic drug therapy. Lancet. 2015;385(9982):2107–17.CrossRefPubMedGoogle Scholar
  46. 46.
    Filion K, Azoulay L, Platt R, et al. A multicenter observational study of incretin-based drugs and heart failure. N Engl J Med. 2016;374(12):1145–54.CrossRefPubMedGoogle Scholar
  47. 47.
    Morgan C, Mukherjee J, Jenkins-Jones S, Holden S, Currie C. Combination therapy with metformin plus sulphonylureas versus metformin plus DPP-4 inhibitors: association with major adverse cardiovascular events and all-cause mortality. Diabetes Obes Metab. 2014;16(10):977–83.CrossRefPubMedGoogle Scholar
  48. 48.
    Kahn C, Chen L, Cohen S. Unraveling the mechanism of action thiazolidinediones. J Clin Invest. 2000;106(11):1305–7.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Nissen S, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457–71.CrossRefPubMedGoogle Scholar
  50. 50.
    Home P, Pocock S, Beck-Nielsen H, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet. 2009;373(9681):2125–35.CrossRefPubMedGoogle Scholar
  51. 51.
    Psaty B, Furberg C. The record on rosiglitazone and the risk of myocardial infarction. N Engl J Med. 2007;357(1):67–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Psaty B, Prentice R. Variation in event rates in trials of patients with type 2 diabetes. JAMA. 2009;302(15):1698–700.CrossRefPubMedGoogle Scholar
  53. 53.
    Dormandy J, Charbonnel B, Eckland D, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomized controlled trial. Lancet. 2005;366(9493):1279–89.CrossRefPubMedGoogle Scholar
  54. 54.
    Erdmann E, Charbonnel B, Wilcox R, et al. Pioglitazone use and heart failure in patients with type 2 diabetes and preexisting cardiovascular disease: data from the PROactive study (PROactive 08). Diabetes Care. 2007;30(11):2773–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Kernan W, Viscoli C, Furie K, et al. Pioglitazone after ischemic stroke or transient ischemic attack. N Engl J Med. 2016;374(14):1321–31.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Tahrani A, Barnett A, Bailey C. Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus. Nat Rev Endocrinol. 2016;12(10):566–92.CrossRefPubMedGoogle Scholar
  57. 57.
  58. 58.
    Floyd J, Wiggins K, Sitlani C, et al. Case–control study of second-line therapies for type 2 diabetes in combination with metformin and the comparative risks of myocardial infarction and stroke. Diabetes Obes Metab. 2015;17(12):1194–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • James H. Flory
    • 1
    Email author
  • Jenny K. Ukena
    • 1
  • James S. Floyd
    • 2
    • 3
  1. 1.Weill Cornell Medical CollegeNew YorkUSA
  2. 2.Cardiovascular Health Research UnitUniversity of WashingtonSeattleUSA
  3. 3.Department of MedicineUniversity of WashingtonSeattleUSA

Personalised recommendations