The Gut as an Endocrine Organ: Role in the Regulation of Food Intake and Body Weight

  • Audrey Melvin
  • Carel W. le Roux
  • Neil G. DochertyEmail author
Lipid and Metabolic Effects of Gastrointestinal Surgery (R. Cohen, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Lipid and Metabolic Effects of Gastrointestinal Surgery



Obesity and its related complications remain a major threat to public health. Efforts to reduce the prevalence of obesity are of paramount importance in improving population health. Through these efforts, our appreciation of the role of gut-derived hormones in the management of body weight has evolved and manipulation of this system serves as the basis for our most effective obesity interventions.

Purpose of the review

We review current understanding of the enteroendocrine regulation of food intake and body weight, focusing on therapies that have successfully embraced the physiology of this system to enable weight loss.

Recent findings

In addition to the role of gut hormones in the regulation of energy homeostasis, our understanding of the potential influence of enteroendocrine peptides in food reward pathways is evolving. So too is the role of gut derived hormones on energy expenditure.


Gut-derived hormones have the ability to alter feeding behavior. Certain obesity therapies already manipulate this system; however, our evolving understanding of the effects of enteroendocrine signals on hedonic aspects of feeding and energy expenditure may be crucial in identifying future obesity therapies.


Obesity Endocrine Gut peptides Weight loss 


Compliance with Ethical Standards

Conflict of Interest

Audrey Melvin and Neil G. Docherty declare that they have no conflict of interest.

Carel W. le Roux declares personal fees from NovoNordisk, Herbalife and Henry Stewart Talks for education in Obesity; honoraria and travel fees for being an invited speaker at conferences; and money paid to his institution from Science Foundation Ireland, from patents, royalties, for payment for manuscript preparation, and from stocks.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath CW. Body-mass index and mortality in a prospective cohort of U.S. Adults. N Engl J Med. 1999;341(15).Google Scholar
  2. 2.
    WHO. World Health Organisation Global Health Observatory Data; Overweight and Obesity 2014. Available from:
  3. 3.
    Hahn TM, Breininger JF, Baskin DG, Schwartz MW. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat Neurosci. 1998;1(4).Google Scholar
  4. 4.
    Lin S, Boey D, Herzog H. NPY and Y receptors: lessons from transgenic and knockout models. Neuropeptides. 2004;38(4):189–200.CrossRefPubMedGoogle Scholar
  5. 5.
    Fong TM, Mao C, MacNeil T, Kalyani R, Smith T, Weinberg D, et al. ART (protein product of agouti-related transcript) as an antagonist of MC-3 and MC-4 receptors. Biochem Biophys Res Commun. 1997;237(3):629–31.CrossRefPubMedGoogle Scholar
  6. 6.
    Wu Q, Palmiter RD. GABAergic signaling by AgRP neurons prevents anorexia via a melanocortin-independent mechanism. Eur J Pharmacol. 2011;660(1):21–7.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Schwartz MW, Woods SC, Porte Jr D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000;404:661–71.PubMedGoogle Scholar
  8. 8.
    Alhadeff AL, Grill HJ. Hindbrain nucleus tractus solitarius glucagon-like peptide-1 receptor signaling reduces appetitive and motivational aspects of feeding. Am J Physiol Regul Integr Comp Physiol. 2014;307(4):R465–70.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Blouet C, Schwartz GJ. Brainstem nutrient sensing in the nucleus of the solitary tract inhibits feeding. Cell Metab. 2012;16(5):579–87.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ter Horst GJ, de Boer P, Luiten PG, van Willigen JD. Ascending projections from the solitary tract nucleus to the hypothalamus. A Phaseolus vulgaris lectin tracing study in the rat. Neuroscience. 1989;31(3):785–97.CrossRefPubMedGoogle Scholar
  11. 11.
    Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402(6762):656–60.CrossRefPubMedGoogle Scholar
  12. 12.
    Romero A, Kirchner H, Heppner K, Pfluger PT, Tschop MH, Nogueiras R. GOAT: the master switch for the ghrelin system? Eur J Endocrinol. 2010;163(1):1–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Date Y, Kojima M, Hosoda H, Sawaguchi A, Mondal MS, Suganuma T, et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology. 2000;141(11):4255–61.PubMedGoogle Scholar
  14. 14.
    Cummings DE, Purnell JQ, Scott Frayo R, Schmidova K, Wisse BE, Weigle DS. A Preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001;50.Google Scholar
  15. 15.
    Masamitsu Nakazato NM, Yukari Date, Masayasu Kojima, Hisayuki Matsuo, Kenji Kangawa & Shigeru Matsukura. A role for ghrelin in the central regulation of feeding. Nature. 2001;409.Google Scholar
  16. 16.
    Callahan HS, Cummings DE, Pepe MS, Breen PA, Matthys CC, Weigle DS. Postprandial suppression of plasma ghrelin level is proportional to ingested caloric load but does not predict intermeal interval in humans. J Clin Endocrinol Metab. 2004;89(3):1319–24.CrossRefPubMedGoogle Scholar
  17. 17.
    Weigle DS, Cummings DE, Newby PD, Breen PA, Frayo RS, Matthys CC, et al. Roles of leptin and ghrelin in the loss of body weight caused by a low fat, high carbohydrate diet. J Clin Endocrinol Metab. 2003;88(4):1577–86.CrossRefPubMedGoogle Scholar
  18. 18.
    Shiya T, Nakazato M, Mizuta M, Date Y, Mondal MS, Tanaka M, et al. Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. J Clin Endocrinol Metab. 2002;87(1):240–4.CrossRefGoogle Scholar
  19. 19.
    Banks WA, Tschop M, Robinson SM, Heiman ML. Extent and direction of ghrelin transport across the blood–brain barrier is determined by its unique primary structure. J Pharmacol Exp Ther. 2002;302(2):822–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Willesen MG, Kristensen P, Romer J. Co-localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat. Neuroendocrinology. 1999;70(5):306–16.CrossRefPubMedGoogle Scholar
  21. 21.
    Shintani M, Ogawa Y, Ebihara K, Aizawa-Abe M, Miyanaga F, Takaya K, et al. Ghrelin, an endogenous growth hormone secretagogue, is a novel orexigenic peptide that antagonizes leptin action through the activation of hypothalamic neuropeptide Y/Y1 receptor pathway. Diabetes. 2001;5.Google Scholar
  22. 22.
    Wren AM, Seal LJ, Brynes AE, Frost GS, Murphy KG, Dhillo WS, et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab. 2001;86(12):5992–5.CrossRefPubMedGoogle Scholar
  23. 23.
    Cummings DE, Weigle DS, Scott Frayo R, Breen PA, Ma MK, Dellinger P, et al. Plasma Ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002;346(21).Google Scholar
  24. 24.
    Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol. 2006;494(3):528–48.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Abizaid A, Liu ZW, Andrews ZB, Shanabrough M, Borok E, Elsworth JD, et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest. 2006;116(12):3229–39.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Perello M, Sakata I, Birnbaum S, Chuang JC, Osborne-Lawrence S, Rovinsky SA, et al. Ghrelin increases the rewarding value of high-fat diet in an orexin-dependent manner. Biol Psychiatry. 2010;67(9):880–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Nilsson O, Bilchik AJ, Goldenring JR, Ballantyne GH, Adrian TE, Modlin IM. Distribution and immunocytochemical colocalization of peptide YY and enteroglucagon in endocrine cells of the rabbit colon. Endocrinology. 1991;129(1):139–48.CrossRefPubMedGoogle Scholar
  28. 28.
    Tatemoto K, Nakano I, Makk G, Angwin P, Mann M, Schilling J, et al. Isolation and primary structure of human peptide YY. Biochem Biophys Res Commun. 1988;157(2):713–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Essah PA, Levy JR, Sistrun SN, Kelly SM, Nestler JE. Effect of macronutrient composition on postprandial peptide YY levels. J Clin Endocrinol Metab. 2007;92(10):4052–5.CrossRefPubMedGoogle Scholar
  30. 30.
    Grandt D, Schimiczek M, Beglinger C, Layer P, Goebell H, Eysselein VE, et al. Two molecular forms of peptide YY (PYY) are abundant in human blood: characterization of a radioimmunoassay recognizing PYY 1–36 and PYY 3–36. Regul Pept. 1994;51(2):151–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Grandt D, Dahms P, Schimiczek M, Eysselein VE, Reeve Jr JR, Mentlein R. [Proteolytic processing by dipeptidyl aminopeptidase IV generates receptor selectivity for peptide YY (PYY)]. Med Klin (Munich). 1993;88(3):143–5.Google Scholar
  32. 32.
    Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, et al. Inhibition of food intake in obese subjects by peptide YY3–36. N Engl J Med. 2003;349(10):941–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Nonaka N, Shioda S, Niehoff ML, Banks WA. Characterization of blood–brain barrier permeability to PYY3-36 in the mouse. J Pharmacol Exp Ther. 2003;306(3):948–53.CrossRefPubMedGoogle Scholar
  34. 34.
    Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, et al. Gut hormone PYY(3–36) physiologically inhibits food intake. Nature. 2002;418(6898):650–4.CrossRefPubMedGoogle Scholar
  35. 35.
    Shi YC, Lin Z, Lau J, Zhang H, Yagi M, Kanzler I, et al. PYY3-36 and pancreatic polypeptide reduce food intake in an additive manner via distinct hypothalamic dependent pathways in mice. Obesity (Silver Spring). 2013;21(12):E669–78.CrossRefGoogle Scholar
  36. 36.
    Stanic A, Brumovsky P, Fetissov S, Shuster S, Herzog H, Hokfelt T. Characterization of neuropeptide Y2 receptor protein expression in the mouse brain. I. Distribution in cell bodies and nerve terminals. J Comp Neurol. 2006;499:357–90.CrossRefPubMedGoogle Scholar
  37. 37.
    Halatchev IG, Ellacott KL, Fan W, Cone RD. Peptide YY3-36 inhibits food intake in mice through a melanocortin-4 receptor-independent mechanism. Endocrinology. 2004;145(6):2585–90.CrossRefPubMedGoogle Scholar
  38. 38.
    Batterham RL. ffytche DH, Rosenthal JM, Zelaya FO, Barker GJ, Withers DJ, et al. PYY modulation of cortical and hypothalamic brain areas predicts feeding behaviour in humans. Nature. 2007;450(7166):106–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Orskov C, Bersani M, Johnsen AH, Hajrup P, Holst JJ. Complete sequences of glucagon-like peptide-1 from human and pig small intestine. J Biol Chem. 1989;264(22).Google Scholar
  40. 40.
    Damholt AB, Buchan AMJ, Holst JJ, Kofod H. Proglucagon processing profile in canine L cells expressing endogenous prohormone convertase 1/3 and prohormone convertase 2. Endocrinology. 1999;140(10):4800–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Orskov C, Rabenhoj L, Wettergren A, Kofod H, Hoist JJ. Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide I in humans. Diabetes. 1994;43:535–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Mentlein R, B. G, W.E. S. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-likepeptide-l(7–36)amide, peptidehistidinemethionine and is responsible for their degradation in human serum. Eur J Biochem. 1993;214:826–835).Google Scholar
  43. 43.
    Kreymann B, Ghatei MA, Williams G, Bloom SR. Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet. 1987;330(8571):1300–4.CrossRefGoogle Scholar
  44. 44.
    Orskov C, Poulsen SS, Moller M, Hoist JJ. Glucagon-like peptide I receptors in the subfornical organ and the area postrema are accessible to circulating glucagon-like peptide I. Diabetes. 1996;45:832–5.CrossRefPubMedGoogle Scholar
  45. 45.
    Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Investig. 1998;101(3):515–20.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Näslund E, Gutniak M, Skogar S, Rössner S, Hellström PM. Glucagon-like peptide 1 increases the period of postprandial satiety and slows gastric emptying in obese men. Am J Clin Nutr. 1998;68:525–30.PubMedGoogle Scholar
  47. 47.
    Shughrue PJ, Lane MV, Merchenthaler I. Glucagon-like peptide-1 receptor (GLP1-R) mRNA in the rat hypothalamus. Endocrinology. 1996;137(11):5159–62.PubMedGoogle Scholar
  48. 48.
    McMahon LR, Wellman PJ. PVN infusion of GLP-1-(7—36) amide suppresses feeding but does not induce aversion or alter locomotion in rats. 1997.Google Scholar
  49. 49.
    Turton MD, O'Shea D, Gunn I, Beak SA, Edwards CMB, Meeran K, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature. 1996;379(6560):69–72.CrossRefPubMedGoogle Scholar
  50. 50.
    Dossat AM, Lilly N, Kay K, Williams DL. Glucagon-like peptide 1 receptors in nucleus accumbens affect food intake. J Neurosci. 2011;31(41):14453–7.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Dickson SL, Shirazi RH, Hansson C, Bergquist F, Nissbrandt H, Skibicka KP. The glucagon-like peptide 1 (GLP-1) analogue, exendin-4, decreases the rewarding value of food: a new role for mesolimbic GLP-1 receptors. J Neurosci. 2012;32(14):4812–20.CrossRefPubMedGoogle Scholar
  52. 52.
    van Bloemendaal L, IJzerman RG, ten Kulve JS, Barkhof F, Konrad RJ, Drent ML, et al. GLP-1 receptor activation modulates appetite- and reward-related brain areas in humans. Diabetes. 2014;63:4186–96.CrossRefPubMedGoogle Scholar
  53. 53.
    ten Kulve JS, Veltman DJ, van Bloemendaal L, Barkhof F, Deacon CF, Holst JJ, et al. Endogenous GLP-1 mediates postprandial reductions in activation in central reward and satiety areas in patients with type 2 diabetes. Diabetologia. 2015;58(12):2688–98.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Munck A, Kervran A, Marie JC, Bataille D, Rosselin G. Glucagon-37 (oxyntomodulin) and glucagon-29 (pancreatic glucagon) in human bowel: analysis by HPLC and radioreceptorassay. Peptides. 1984;5(3):553–61.CrossRefPubMedGoogle Scholar
  55. 55.
    Holst JJ. Enteroglucagon. Annu Rev Physiol. 1997;59:257–71.CrossRefPubMedGoogle Scholar
  56. 56.
    Zhu L, Tamvakopoulos C, Xie D, Dragovic J, Shen X, Fenyk-Melody JE, et al. The role of dipeptidyl peptidase IV in the cleavage of glucagon family peptides: in vivo metabolism of pituitary adenylate cyclase activating polypeptide-(1–38). J Biol Chem. 2003;278(25):22418–23.CrossRefPubMedGoogle Scholar
  57. 57.
    Schjoldager B, Mortensen PE, Myhre J, Christiansen J, Holst JJ. Oxyntomodulin from distal gut. Role in regulation of gastric and pancreatic functions. Dig Dis Sci. 1989;34(9):1411–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Gros L, Thorens B, Bataille D, Kervran A. Glucagon-like peptide-1-(7–36) amide, oxyntomodulin, and glucagon interact with a common receptor in a somatostatin-secreting cell line. Endocrinology. 1993;133(2):631–8.PubMedGoogle Scholar
  59. 59.
    Dakin CL, Gunn I, Small CJ, Edwards CMB, Hay DL, Smith DM, et al. Oxyntomodulin inhibits food intake in the rat. Endocrinology. 2001;142(10):4244–50.CrossRefPubMedGoogle Scholar
  60. 60.
    Baggio LL, Huang Q, Brown TJ, Drucker DJ. Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure. Gastroenterology. 2004;127(2):546–58.CrossRefPubMedGoogle Scholar
  61. 61.
    Parkinson JR, Chaudhri OB, Kuo YT, Field BC, Herlihy AH, Dhillo WS, et al. Differential patterns of neuronal activation in the brainstem and hypothalamus following peripheral injection of GLP-1, oxyntomodulin and lithium chloride in mice detected by manganese-enhanced magnetic resonance imaging (MEMRI). Neuroimage. 2009;44(3):1022–31.CrossRefPubMedGoogle Scholar
  62. 62.
    Kosinski JR, Hubert J, Carrington PE, Chicchi GG, Mu J, Miller C, et al. The glucagon receptor is involved in mediating the body weight-lowering effects of oxyntomodulin. Obesity (Silver Spring). 2012;20(8):1566–71.CrossRefGoogle Scholar
  63. 63.
    Wynne K, Park AJ, Small CJ, Meeran K, Ghatei MA, Frost GS, et al. Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int J Obes (Lond). 2006;30(12):1729–36.CrossRefGoogle Scholar
  64. 64.
    Nakagawa A, Satake H, Nakabayashi H, Nishizawa M, Furuya K, Nakano S, et al. Receptor gene expression of glucagon-like peptide-1, but not glucose-dependent insulinotropic polypeptide, in rat nodose ganglion cells. Auton Neurosci. 2004;110(1):36–43.CrossRefPubMedGoogle Scholar
  65. 65.
    Koda S, Date Y, Murakami N, Shimbara T, Hanada T, Toshinai K, et al. The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats. Endocrinology. 2005;146(5):2369–75.CrossRefPubMedGoogle Scholar
  66. 66.
    Abbott CR, Monteiro M, Small CJ, Sajedi A, Smith KL, Parkinson JR, et al. The inhibitory effects of peripheral administration of peptide YY(3–36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res. 2005;1044(1):127–31.CrossRefPubMedGoogle Scholar
  67. 67.
    Ruttimann EB, Arnold M, Hillebrand JJ, Geary N, Langhans W. Intrameal hepatic portal and intraperitoneal infusions of glucagon-like peptide-1 reduce spontaneous meal size in the rat via different mechanisms. Endocrinology. 2009;150(3):1174–81.CrossRefPubMedGoogle Scholar
  68. 68.
    le Roux CW, Neary NM, Halsey TJ, Small CJ, Martinez-Isla AM, Ghatei MA, et al. Ghrelin does not stimulate food intake in patients with surgical procedures involving vagotomy. J Clin Endocrinol Metab. 2005;90(8):4521–4.CrossRefPubMedGoogle Scholar
  69. 69.
    Arnold M, Mura A, Langhans W, Geary N. Gut vagal afferents are not necessary for the eating-stimulatory effect of intraperitoneally injected ghrelin in the rat. J Neurosci. 2006;26(43):11052–60.CrossRefPubMedGoogle Scholar
  70. 70.
    Date Y, Murakami N, Toshinai K, Matsukura S, Niijima A, Matsuo H, et al. The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology. 2002;123(4):1120–8.CrossRefPubMedGoogle Scholar
  71. 71.
    Zhang JH, Nolan JD, Kennie SL, Johnston IM, Dew T, Dixon PH, et al. Potent stimulation of fibroblast growth factor 19 expression in the human ileum by bile acids. Am J Physiol Gastrointest Liver Physiol. 2013;304(10):G940–8.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Ma Y, Huang Y, Yan L, Gao M, Liu D. Synthetic FXR agonist GW4064 prevents diet-induced hepatic steatosis and insulin resistance. Pharm Res. 2013;30(5):1447–57.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.•
    Fang S, Suh JM, Reilly SM, Yu E, Osborn O, Lackey D, et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med. 2015;21(2):159–65. This paper reports on increased energy expenditure mediated through intestinal FXR activation. CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Wing RR, Bolin P, Brancati FL, Bray GA, Clark JM, Coday M, et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med. 2013;369(2):145–54.CrossRefPubMedGoogle Scholar
  75. 75.
    Sumithran P, Prendergast LA, Delbridge E, Purcell K, Shulkes A, Kriketos A, et al. Long-term persistence of hormonal adaptations to weight loss. N Engl J Med. 2011;365(17):1597–604.CrossRefPubMedGoogle Scholar
  76. 76.
    Torsten Olbers HL. Monika Fegervik-Olsen and Lars Lundell. Laparoscopic gastric bypass: development of technique, respiratory function, and long-term outcome. Obes Surg. 2003;13:364–70.CrossRefPubMedGoogle Scholar
  77. 77.
    Carswell KA, Vincent RP, Belgaumkar AP, Sherwood RA, Amiel SA, Patel AG, et al. The effect of bariatric surgery on intestinal absorption and transit time. Obes Surg. 2014;24(5):796–805.CrossRefPubMedGoogle Scholar
  78. 78.
    Marmuse PMDCJ-P. Laparoscopic sleeve gastrectomy as an initial bariatric operation for high-risk patients: initial results in 10 patients. Obes Surg. 2005;15:1030–3.CrossRefPubMedGoogle Scholar
  79. 79.
    Melissas J, Leventi A, Klinaki I, Perisinakis K, Koukouraki S, de Bree E, et al. Alterations of global gastrointestinal motility after sleeve gastrectomy: a prospective study. Ann Surg. 2013;258(6):976–82.CrossRefPubMedGoogle Scholar
  80. 80.
    Sjöström L, Lindroos A, Peltonen M, Torgerson J, Bouchard C, Carlsson B, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351:2683–93.CrossRefPubMedGoogle Scholar
  81. 81.
    le Roux CW, Welbourn R, Werling M, Osborne A, Kokkinos A, Laurenius A, et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg. 2007;246(5):780–5.CrossRefPubMedGoogle Scholar
  82. 82.
    le Roux CW, Aylwin SJB, Batterham RL, Borg CM, Coyle F, Prasad V, et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg. 2006;243(1):108–14.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Laferrere B, Swerdlow N, Bawa B, Arias S, Bose M, Olivan B, et al. Rise of oxyntomodulin in response to oral glucose after gastric bypass surgery in patients with type 2 diabetes. J Clin Endocrinol Metab. 2010;95(8):4072–6.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Yousseif A, Emmanuel J, Karra E, Millet Q, Elkalaawy M, Jenkinson AD, et al. Differential effects of laparoscopic sleeve gastrectomy and laparoscopic gastric bypass on appetite, circulating acyl-ghrelin, peptide YY3-36 and active GLP-1 levels in non-diabetic humans. Obes Surg. 2014;24(2):241–52.CrossRefPubMedGoogle Scholar
  85. 85.
    Korner J, Bessler M, Cirilo LJ, Conwell IM, Daud A, Restuccia NL, et al. Effects of Roux-en-Y gastric bypass surgery on fasting and postprandial concentrations of plasma ghrelin, peptide YY, and insulin. J Clin Endocrinol Metab. 2005;90(1):359–65.CrossRefPubMedGoogle Scholar
  86. 86.
    Dimitriadis E, Daskalakis M, Kampa M, Peppe A, Papadakis JA, Melissas J. Alterations in gut hormones after laparoscopic sleeve gastrectomy: a prospective clinical and laboratory investigational study. Ann Surg. 2013;257(4):647–54.CrossRefPubMedGoogle Scholar
  87. 87.
    Karamanakos SN, Vagenas K, Kalfarentzos F, Alexandrides TK. Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy: a prospective, double blind study. Ann Surg. 2008;247(3):401–7.CrossRefPubMedGoogle Scholar
  88. 88.•
    Scholtz S, Miras AD, Chhina N, Prechtl CG, Sleeth ML, Daud NM, et al. Obese patients after gastric bypass surgery have lower brain-hedonic responses to food than after gastric banding. Gut. 2014;63(6):891–902. This paper demonstrates decreased neural food reward pathways following RYGB surgery.Google Scholar
  89. 89.•
    Goldstone AP, Miras AD, Scholtz S, Jackson S, Neff KJ, Penicaud L, et al. Link between increased satiety gut hormones and reduced food reward after gastric bypass surgery for obesity. J Clin Endocrinol Metab. 2016;101(2):599–609. This paper demonstrates decreased activity in neural food reward pathways following RYGB surgery.Google Scholar
  90. 90.
    Werling M, Fandriks L, Olbers T, Bueter M, Sjostrom L, Lonroth H, et al. Roux-en-Y gastric bypass surgery increases respiratory quotient and energy expenditure during food intake. PLoS One. 2015;10(6):e0129784.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Pournaras DJ, Glicksman C, Vincent RP, Kuganolipava S, Alaghband-Zadeh J, Mahon D, et al. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology. 2012;153(8):3613–9.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Maruyama T, Miyamoto Y, Nakamura T, Tamai Y, Okada H, Sugiyama E, et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem Biophys Res Commun. 2002;298:714–9.CrossRefPubMedGoogle Scholar
  93. 93.
    Wu T, Bound MJ, Standfield SD, Gedulin B, Jones KL, Horowitz M, et al. Effects of rectal administration of taurocholic acid on glucagon-like peptide-1 and peptide YY secretion in healthy humans. Diabetes Obes Metab. 2013;15(5):474–7.CrossRefPubMedGoogle Scholar
  94. 94.
    Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439(7075):484–9.CrossRefPubMedGoogle Scholar
  95. 95.
    Sachdev S, Wang Q, Billington C, Connett J, Ahmed L, Inabnet W, et al. FGF 19 and bile acids increase following Roux-en-Y gastric bypass but not after medical management in patients with type 2 diabetes. Obes Surg. 2015;26(5):957–65.CrossRefGoogle Scholar
  96. 96.
    Nauck M, Frid A, Hermansen K, Shah NS, Tankova T, Mitha IH, et al. Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes: the LEAD (liraglutide effect and action in diabetes)-2 study. Diabetes Care. 2009;32(1):84–90.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med. 2015;373(1):11–22.CrossRefPubMedGoogle Scholar
  98. 98.
    Secher A, Jelsing J, Baquero AF, Hecksher-Sorensen J, Cowley MA, Dalboge LS, et al. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. J Clin Invest. 2014;124(10):4473–88.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Farr OM, Sofopoulos M, Tsoukas MA, Dincer F, Thakkar B, Sahin-Efe A, et al. GLP-1 receptors exist in the parietal cortex, hypothalamus and medulla of human brains and the GLP-1 analogue liraglutide alters brain activity related to highly desirable food cues in individuals with diabetes: a crossover, randomised, placebo-controlled trial. Diabetologia. 2016;59(5):945–65.CrossRefGoogle Scholar
  100. 100.
    Fishman E, Melanson D, Lamport R, Levine A. A novel endoscopic delivery system for placement of a duodenal-jejunal implant for the treatment of obesity and type 2 diabetes. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:2501–3.PubMedGoogle Scholar
  101. 101.
    Schouten R, Rijs CS, Bouvy ND, Hameeteman W, Koek GH, Janssen IM, et al. A multicenter, randomized efficacy study of the EndoBarrier Gastrointestinal Liner for presurgical weight loss prior to bariatric surgery. Ann Surg. 2010;251(2):236–43.CrossRefPubMedGoogle Scholar
  102. 102.
    Gersin KS, Rothstein RI, Rosenthal RJ, Stefanidis D, Deal SE, Kuwada TS, et al. Open-label, sham-controlled trial of an endoscopic duodenojejunal bypass liner for preoperative weight loss in bariatric surgery candidates. Gastrointest Endosc. 2010;71(6):976–82.CrossRefPubMedGoogle Scholar
  103. 103.
    Rohde U, Hedback N, Gluud LL, Vilsboll T, Knop FK. Effect of the EndoBarrier Gastrointestinal Liner on obesity and type 2 diabetes: a systematic review and meta-analysis. Diabetes Obes Metab. 2016;18(3):300–5.CrossRefPubMedGoogle Scholar
  104. 104.
    de Jonge C, Rensen SS, Verdam FJ, Vincent RP, Bloom SR, Buurman WA, et al. Endoscopic duodenal-jejunal bypass liner rapidly improves type 2 diabetes. Obes Surg. 2013;23(9):1354–60.CrossRefPubMedGoogle Scholar
  105. 105.
    de Jonge C, Rensen SS, Verdam FJ, Vincent RP, Bloom SR, Buurman WA, et al. Impact of duodenal-jejunal exclusion on satiety hormones. Obes Surg. 2016;26(3):672–8.CrossRefPubMedGoogle Scholar
  106. 106.
    Habegger KM, Al-Massadi O, Heppner KM, Myronovych A, Holland J, Berger J, et al. Duodenal nutrient exclusion improves metabolic syndrome and stimulates villus hyperplasia. Gut. 2014;63(8):1238–46.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Audrey Melvin
    • 1
  • Carel W. le Roux
    • 1
    • 2
  • Neil G. Docherty
    • 1
    Email author
  1. 1.Diabetes Complications Research Centre, Conway InstituteUniversity College DublinDublinIreland
  2. 2.Investigative ScienceImperial College LondonLondonUK

Personalised recommendations