The Underlying Chemistry of Electronegative LDL’s Atherogenicity

  • Liang-Yin Ke
  • Nicole Stancel
  • Henry Bair
  • Chu-Huang ChenEmail author
Genetics (AJ Marian, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Genetics


Electronegative low-density lipoprotein (LDL) found in human plasma is highly atherogenic, and its level is elevated in individuals with increased cardiovascular risk. In this review, we summarize the available data regarding the elevation of the levels of electronegative LDL in the plasma of patients with various diseases. In addition, we discuss the harmful effects and underlying mechanisms of electronegative LDL in various cell types. We also highlight the known biochemical properties of electronegative LDL that may contribute to its atherogenic functions, including its lipid and protein composition, enzymatic activities, and structural features. Given the increasing recognition of electronegative LDL as a potential biomarker and therapeutic target for the prevention of cardiovascular disease, key future goals include the development of a standard method for the detection of electronegative LDL that can be used in a large-scale population survey and the identification and testing of strategies for eliminating electronegative LDL from the blood.


Atherogenesis Cardiovascular disease Endothelial cell apoptosis Electronegative LDL Platelet activation Thrombogenesis 



Our work described in this review was supported in part by grants from the American Diabetes Association (1-04-RA-13), the National Heart, Lung, and Blood Institute (HL-63364), Merck/Schering-Plough Pharmaceuticals (research grant), the Mao-Kuei Lin Research Fund of Chicony Electronics, the National Science Council (NSC 100-2314-B-039-040-MY3), and Kaohsiung Medical University Hospital, Taiwan (research grant 101-KMUH-M047).

Compliance with Ethics Guidelines

Conflict of Interest

Liang-Yin Ke, Nicole Stancel, Henry Bair, and Chu-Huang Chen declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Goff Jr DC, Lloyd-Jones DM, Bennett G, et al. ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013. doi: 10.1016/j.jacc.2013.11.00.PubMedGoogle Scholar
  2. 2.
    Stone NJ, Robinson J, Lichtenstein AH, et al. ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013. doi: 10.1016/j.jacc.2013.11.002.PubMedCentralGoogle Scholar
  3. 3.
    Taylor F, Huffman MD, Macedo AF, et al. Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2013;1, CD004816.PubMedGoogle Scholar
  4. 4.
    Kjekshus J, Apetrei E, Barrios V, et al. Rosuvastatin in older patients with systolic heart failure. N Engl J Med. 2007;357:2248–61.PubMedCrossRefGoogle Scholar
  5. 5.
    Gissi HFI, Tavazzi L, Maggioni AP, et al. Effect of rosuvastatin in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372:1231–9.CrossRefGoogle Scholar
  6. 6.
    Schwandt P, Liepold E, Bertsch T, Haas GM. Lifestyle, cardiovascular drugs and risk factors in younger and elder adults: the PEP Family Heart Study. Int J Prev Med. 2010;1:56–61.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Yasue H, Hirai N, Mizuno Y, et al. Low-grade inflammation, thrombogenicity, and atherogenic lipid profile in cigarette smokers. Circ J. 2006;70:8–13.PubMedCrossRefGoogle Scholar
  8. 8.
    Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–95.PubMedCrossRefGoogle Scholar
  9. 9.
    Skaggs BJ, Hahn BH, McMahon M. Accelerated atherosclerosis in patients with SLE—mechanisms and management. Nat Rev Rheumatol. 2012;8:214–23.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Ruiz-Limon P, Barbarroja N, Perez-Sanchez C, et al. Atherosclerosis and cardiovascular disease in systemic lupus erythematosus: effects of in vivo statin treatment. Ann Rheum Dis. 2014. doi: 10.1136/annrheumdis-2013-204351.Google Scholar
  11. 11.
    Marian AJ. The enigma of genetics etiology of atherosclerosis in the post-GWAS era. Curr Atheroscler Rep. 2012;14:295–9.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Chung CP, Solus JF, Oeser A, et al. Genetic variation and coronary atherosclerosis in patients with systemic lupus erythematosus. Lupus. 2014. doi: 10.1177/0961203314530019.Google Scholar
  13. 13.
    Carmena R, Duriez P, Fruchart JC. Atherogenic lipoprotein particles in atherosclerosis. Circulation. 2004;109:III2–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Koba S, Hirano T, Ito Y, et al. Significance of small dense low-density lipoprotein-cholesterol concentrations in relation to the severity of coronary heart diseases. Atherosclerosis. 2006;189:206–14.PubMedCrossRefGoogle Scholar
  15. 15.
    Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868–74.PubMedCrossRefGoogle Scholar
  16. 16.
    Witztum JL, Steinberg D. The oxidative modification hypothesis of atherosclerosis: does it hold for humans? Trends Cardiovasc Med. 2001;11:93–102.PubMedCrossRefGoogle Scholar
  17. 17.
    Itabe H, Yamamoto H, Imanaka T, et al. Sensitive detection of oxidatively modified low density lipoprotein using a monoclonal antibody. J Lipid Res. 1996;37:45–53.PubMedGoogle Scholar
  18. 18.
    Palinski W, Horkko S, Miller E, et al. Cloning of monoclonal autoantibodies to epitopes of oxidized lipoproteins from apolipoprotein E-deficient mice. Demonstration of epitopes of oxidized low density lipoprotein in human plasma. J Clin Invest. 1996;98:800–14.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Mello AP, da Silva IT, Abdalla DS, Damasceno NR. Electronegative low-density lipoprotein: origin and impact on health and disease. Atherosclerosis. 2011;215:257–65.PubMedCrossRefGoogle Scholar
  20. 20.
    Sanchez-Quesada JL, Villegas S, Ordonez-Llanos J. Electronegative low-density lipoprotein. A link between apolipoprotein B misfolding, lipoprotein aggregation and proteoglycan binding. Curr Opin Lipidol. 2012;23:479–86.PubMedCrossRefGoogle Scholar
  21. 21.
    Hoff HF, Gaubatz JW. Isolation, purification, and characterization of a lipoprotein containing apo B from the human aorta. Atherosclerosis. 1982;42:273–97.PubMedCrossRefGoogle Scholar
  22. 22.
    Hoff HF, Karagas M, Heideman CL, et al. Correlation in the human aorta of apo B fractions with tissue cholesterol and collagen content. Atherosclerosis. 1979;32:259–68.PubMedCrossRefGoogle Scholar
  23. 23.
    Avogaro P, Bon GB, Cazzolato G. Presence of a modified low density lipoprotein in humans. Arteriosclerosis. 1988;8:79–87.PubMedCrossRefGoogle Scholar
  24. 24.
    Chen CH, Jiang T, Yang JH, et al. Low-density lipoprotein in hypercholesterolemic human plasma induces vascular endothelial cell apoptosis by inhibiting fibroblast growth factor 2 transcription. Circulation. 2003;107:2102–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Yang CY, Raya JL, Chen HH, et al. Isolation, characterization, and functional assessment of oxidatively modified subfractions of circulating low-density lipoproteins. Arterioscler Thromb Vasc Biol. 2003;23:1083–90.PubMedCrossRefGoogle Scholar
  26. 26.
    Lu J, Yang JH, Burns AR, et al. Mediation of electronegative low-density lipoprotein signaling by LOX-1: a possible mechanism of endothelial apoptosis. Circ Res. 2009;104:619–27.PubMedCrossRefGoogle Scholar
  27. 27.•
    Lee AS, Wang GJ, Chan HC, et al. Electronegative low-density lipoprotein induces cardiomyocyte apoptosis indirectly through endothelial cell-released chemokines. Apoptosis. 2012;17:1009–18. L5 indirectly induced cardiomyocyte apoptosis by enhancing secretion of ELR-positive CXC chemokines from ECs, which in turn activate CXCR2/phosphoinositide 3-kinase/NF-κB signaling to increase the release of tumor necrosis factor α and IL-1β.PubMedCrossRefGoogle Scholar
  28. 28.•
    Chu CS, Wang YC, Lu LS, et al. Electronegative low-density lipoprotein increases C-reactive protein expression in vascular endothelial cells through the LOX-1 receptor. PLoS One. 2013;8, e70533. L5 induces C-reactive protein expression and reactive oxygen species production in vitro, and its levels are reduced in the plasma of hypercholesterolemic patients treated with atorvastatin.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Gaubatz JW, Gillard BK, Massey JB, et al. Dynamics of dense electronegative low density lipoproteins and their preferential association with lipoprotein phospholipase A2. J Lipid Res. 2007;48:348–57.PubMedCrossRefGoogle Scholar
  30. 30.
    Tang D, Lu J, Walterscheid JP, et al. Electronegative LDL circulating in smokers impairs endothelial progenitor cell differentiation by inhibiting Akt phosphorylation via LOX-1. J Lipid Res. 2008;49:33–47.PubMedCrossRefGoogle Scholar
  31. 31.
    Urata J, Ikeda S, Koga S, et al. Negatively charged low-density lipoprotein is associated with atherogenic risk in hypertensive patients. Heart Vessels. 2012;27:235–42.PubMedCrossRefGoogle Scholar
  32. 32.••
    Chan HC, Ke LY, Chu CS, et al. Highly electronegative LDL from patients with ST-elevation myocardial infarction triggers platelet activation and aggregation. Blood. 2013;122:3632–41. L5 concentration is increased in the plasma of patients with STEMI and enhances ADP-stimulated platelet aggregation and platelet–EC adhesion in vitro, suggesting a role for L5 in thrombogenesis.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Oliveira JA, Sevanian A, Rodrigues RJ, et al. Minimally modified electronegative LDL and its autoantibodies in acute and chronic coronary syndromes. Clin Biochem. 2006;39:708–14.PubMedCrossRefGoogle Scholar
  34. 34.
    Lobo J, Santos F, Grosso D, et al. Electronegative LDL and lipid abnormalities in patients undergoing hemodialysis and peritoneal dialysis. Nephron Clin Pract. 2008;108:c298–304.PubMedCrossRefGoogle Scholar
  35. 35.•
    Sawamura T, Kakino A, Fujita Y. LOX-1: a multiligand receptor at the crossroads of response to danger signals. Curr Opin Lipidol. 2012;23:439–45. Among various LOX-1 ligands, L5 and its interaction with LOX-1 are discussed in the context of the pathophysiological significance of LOX-1.PubMedCrossRefGoogle Scholar
  36. 36.
    Lu J, Jiang W, Yang JH, et al. Electronegative LDL impairs vascular endothelial cell integrity in diabetes by disrupting fibroblast growth factor 2 (FGF2) autoregulation. Diabetes. 2008;57:158–66.PubMedCrossRefGoogle Scholar
  37. 37.
    Chen HH, Hosken BD, Huang M, et al. Electronegative LDLs from familial hypercholesterolemic patients are physicochemically heterogeneous but uniformly proapoptotic. J Lipid Res. 2007;48:177–84.PubMedCrossRefGoogle Scholar
  38. 38.
    Sanchez-Quesada JL, Camacho M, Anton R, et al. Electronegative LDL of FH subjects: chemical characterization and induction of chemokine release from human endothelial cells. Atherosclerosis. 2003;166:261–70.PubMedCrossRefGoogle Scholar
  39. 39.
    Tai MH, Kuo SM, Liang HT, et al. Modulation of angiogenic processes in cultured endothelial cells by low density lipoproteins subfractions from patients with familial hypercholesterolemia. Atherosclerosis. 2006;186:448–57.PubMedCrossRefGoogle Scholar
  40. 40.
    von Eckardstein A, Rohrer L. Transendothelial lipoprotein transport and regulation of endothelial permeability and integrity by lipoproteins. Curr Opin Lipidol. 2009;20:197–205.CrossRefGoogle Scholar
  41. 41.
    Estruch M, Sanchez-Quesada JL, Beloki L, et al. The induction of cytokine release in monocytes by electronegative low-density lipoprotein (LDL) is related to its higher ceramide content than native LDL. Int J Mol Sci. 2013;14:2601–16.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Abe Y, Fornage M, Yang CY, et al. L5, the most electronegative subfraction of plasma LDL, induces endothelial vascular cell adhesion molecule 1 and CXC chemokines, which mediate mononuclear leukocyte adhesion. Atherosclerosis. 2007;192:56–66.PubMedCrossRefGoogle Scholar
  43. 43.
    De Castellarnau C, Sanchez-Quesada JL, Benitez S, et al. Electronegative LDL from normolipemic subjects induces IL-8 and monocyte chemotactic protein secretion by human endothelial cells. Arterioscler Thromb Vasc Biol. 2000;20:2281–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Nichols TC. Bad cholesterol breaking really bad. Blood. 2013;122:3551–3.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Benitez S, Perez A, Sanchez-Quesada JL, et al. Electronegative low-density lipoprotein subfraction from type 2 diabetic subjects is proatherogenic and unrelated to glycemic control. Diabetes Metab Res Rev. 2007;23:26–34.PubMedCrossRefGoogle Scholar
  46. 46.••
    Ke LY, Engler DA, Lu J, et al. Chemical composition-oriented receptor selectivity of L5, a naturally occurring atherogenic low-density lipoprotein. Pure Appl Chem. 2011;83. A proteomic study of L5 showing that additional apolipoproteins in L5 contribute to its electronegativity and receptor selectivity. Google Scholar
  47. 47.
    Chappey B, Myara I, Benoit MO, et al. Characteristics of ten charge-differing subfractions isolated from human native low-density lipoproteins (LDL). No evidence of peroxidative modifications. Biochim Biophys Acta. 1995;1259:261–70.PubMedCrossRefGoogle Scholar
  48. 48.
    Moro E, Alessandrini P, Zambon C, et al. Is glycation of low density lipoproteins in patients with type 2 diabetes mellitus a LDL pre-oxidative condition? Diabet Med. 1999;16:663–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Geromanos SJ, Vissers JP, Silva JC, et al. The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS. Proteomics. 2009;9:1683–95.PubMedCrossRefGoogle Scholar
  50. 50.
    Li GZ, Vissers JP, Silva JC, et al. Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics. 2009;9:1696–719.PubMedCrossRefGoogle Scholar
  51. 51.
    Bancells C, Canals F, Benitez S, et al. Proteomic analysis of electronegative low-density lipoprotein. J Lipid Res. 2010;51:3508–15.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Scheffer PG, Bakker SJ, Heine RJ, Teerlink T. Measurement of low-density lipoprotein particle size by high-performance gel-filtration chromatography. Clin Chem. 1997;43:1904–12.PubMedGoogle Scholar
  53. 53.
    Tselepis AD, John Chapman M. Inflammation, bioactive lipids and atherosclerosis: potential roles of a lipoprotein-associated phospholipase A2, platelet activating factor-acetylhydrolase. Atheroscler Suppl. 2002;3:57–68.PubMedCrossRefGoogle Scholar
  54. 54.
    Zalewski A, Macphee C. Role of lipoprotein-associated phospholipase A2 in atherosclerosis: biology, epidemiology, and possible therapeutic target. Arterioscler Thromb Vasc Biol. 2005;25:923–31.PubMedCrossRefGoogle Scholar
  55. 55.
    Sanchez-Quesada JL, Vinagre I, De Juan-Franco E, et al. Impact of the LDL subfraction phenotype on Lp-PLA2 distribution, LDL modification and HDL composition in type 2 diabetes. Cardiovasc Diabetol. 2013;12:112.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Yang CY, Chen HH, Huang MT, et al. Pro-apoptotic low-density lipoprotein subfractions in type II diabetes. Atherosclerosis. 2007;193:283–91.PubMedCrossRefGoogle Scholar
  57. 57.
    Benitez S, Villegas V, Bancells C, et al. Impaired binding affinity of electronegative low-density lipoprotein (LDL) to the LDL receptor is related to nonesterified fatty acids and lysophosphatidylcholine content. Biochemistry. 2004;43:15863–72.PubMedCrossRefGoogle Scholar
  58. 58.
    Karpe F, Dickmann JR, Frayn KN. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes. 2011;60:2441–9.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.•
    Sanchez-Quesada JL, Vinagre I, de Juan-Franco E, et al. Effect of improving glycemic control in patients with type 2 diabetes mellitus on low-density lipoprotein size, electronegative low-density lipoprotein and lipoprotein-associated phospholipase A2 distribution. Am J Cardiol. 2012;110:67–71. Optimal glycemic control in patients with type 2 diabetes promotes atheroprotective changes that include decreased levels of LDL(–).PubMedCrossRefGoogle Scholar
  60. 60.
    Benitez S, Camacho M, Arcelus R, et al. Increased lysophosphatidylcholine and non-esterified fatty acid content in LDL induces chemokine release in endothelial cells. Relationship with electronegative LDL. Atherosclerosis. 2004;177:299–305.PubMedGoogle Scholar
  61. 61.
    Holmes MV, Simon T, Exeter HJ, et al. Secretory phospholipase A2-IIA and cardiovascular disease: a Mendelian randomization study. J Am Coll Cardiol. 2013;62:1966–76.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Xu H, Valenzuela N, Fai S, et al. Targeted lipidomics - advances in profiling lysophosphocholine and platelet-activating factor second messengers. FEBS J. 2013;280:5652–67.PubMedCrossRefGoogle Scholar
  63. 63.
    Benítez S, Sanchez-Quesada JL, Ribas V, et al. Platelet-activating factor acetylhydrolase is mainly associated with electronegative low-density lipoprotein subfraction. Circulation. 2003;108:92–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Sanchez-Quesada JL, Benitez S, Perez A, et al. The inflammatory properties of electronegative low-density lipoprotein from type 1 diabetic patients are related to increased platelet-activating factor acetylhydrolase activity. Diabetologia. 2005;48:2162–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Ito S, Noguchi E, Shibasaki M, et al. Evidence for an association between plasma platelet-activating factor acetylhydrolase deficiency and increased risk of childhood atopic asthma. J Hum Genet. 2002;47:99–101.PubMedCrossRefGoogle Scholar
  66. 66.
    Stafforini DM. Biology of platelet-activating factor acetylhydrolase (PAF-AH, lipoprotein associated phospholipase A2). Cardiovasc Drugs Ther. 2009;23:73–83.PubMedCrossRefGoogle Scholar
  67. 67.
    Bancells C, Benitez S, Jauhiainen M, et al. High binding affinity of electronegative LDL to human aortic proteoglycans depends on its aggregation level. J Lipid Res. 2009;50:446–55.PubMedCrossRefGoogle Scholar
  68. 68.•
    Bancells C, Benitez S, Ordonez-Llanos J, et al. Immunochemical analysis of the electronegative LDL subfraction shows that abnormal N-terminal apolipoprotein B conformation is involved in increased binding to proteoglycans. J Biol Chem. 2011;286:1125–33. The amino-terminal region of apo B-100 has an abnormal conformation in LDL(–) that may promote its increased binding to arterial proteoglycans and influence its receptor affinity.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Bancells C, Benitez S, Villegas S, et al. Novel phospholipolytic activities associated with electronegative low-density lipoprotein are involved in increased self-aggregation. Biochemistry. 2008;47:8186–94.PubMedCrossRefGoogle Scholar
  70. 70.
    Doehner W, Bunck AC, Rauchhaus M, et al. Secretory sphingomyelinase is upregulated in chronic heart failure: a second messenger system of immune activation relates to body composition, muscular functional capacity, and peripheral blood flow. Eur Heart J. 2007;28:821–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Gorska M, Baranczuk E, Dobrzyn A. Secretory Zn2+-dependent sphingomyelinase activity in the serum of patients with type 2 diabetes is elevated. Horm Metab Res. 2003;35:506–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Chavez JA, Summers SA. A ceramide-centric view of insulin resistance. Cell Metab. 2012;15:585–94.PubMedCrossRefGoogle Scholar
  73. 73.
    Estruch M, Sanchez-Quesada JL, Ordonez-Llanos J, Benitez S. Ceramide-enriched LDL induces cytokine release through TLR4 and CD14 in monocytes. Similarities with electronegative LDL. Clin Investig Arterioscler. 2014. doi: 10.1016/j.arteri.2013.12.003.PubMedGoogle Scholar
  74. 74.
    Yu J, Novgorodov SA, Chudakova D, et al. JNK3 signaling pathway activates ceramide synthase leading to mitochondrial dysfunction. J Biol Chem. 2007;282:25940–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Obama T, Kato R, Masuda Y, et al. Analysis of modified apolipoprotein B-100 structures formed in oxidized low-density lipoprotein using LC-MS/MS. Proteomics. 2007;7:2132–41.PubMedCrossRefGoogle Scholar
  76. 76.
    Segrest JP, Jones MK, Mishra VK, et al. apoB-100 has a pentapartite structure composed of three amphipathic alpha-helical domains alternating with two amphipathic beta-strand domains. Detection by the computer program LOCATE. Arterioscler Thromb. 1994;14:1674–85.PubMedCrossRefGoogle Scholar
  77. 77.
    Walters MJ, Wrenn SP. Effect of sphingomyelinase-mediated generation of ceramide on aggregation of low-density lipoprotein. Langmuir. 2008;24:9642–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Oestvang J, Bonnefont-Rousselot D, Ninio E, et al. Modification of LDL with human secretory phospholipase A2 or sphingomyelinase promotes its arachidonic acid-releasing propensity. J Lipid Res. 2004;45:831–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Devlin CM, Leventhal AR, Kuriakose G, et al. Acid sphingomyelinase promotes lipoprotein retention within early atheromata and accelerates lesion progression. Arterioscler Thromb Vasc Biol. 2008;28:1723–30.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Hamilton RT, Asatryan L, Nilsen JT, et al. LDL protein nitration: implication for LDL protein unfolding. Arch Biochem Biophys. 2008;479:1–14.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Parasassi T, Bittolo-Bon G, Brunelli R, et al. Loss of apoB-100 secondary structure and conformation in hydroperoxide rich, electronegative LDL(-). Free Radic Biol Med. 2001;31:82–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Holopainen JM, Medina OP, Metso AJ, Kinnunen PK. Sphingomyelinase activity associated with human plasma low density lipoprotein. J Biol Chem. 2000;275:16484–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Kinnunen PK, Holopainen JM. Sphingomyelinase activity of LDL: a link between atherosclerosis, ceramide, and apoptosis? Trends Cardiovasc Med. 2002;12:37–42.PubMedCrossRefGoogle Scholar
  84. 84.
    Hevonoja T, Pentikainen MO, Hyvonen MT, et al. Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL. Biochim Biophys Acta. 2000;1488:189–210.PubMedCrossRefGoogle Scholar
  85. 85.
    Yang CY, Kim TW, Weng SA, et al. Isolation and characterization of sulfhydryl and disulfide peptides of human apolipoprotein B-100. Proc Natl Acad Sci U S A. 1990;87:5523–7.PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Zhao Y, McCabe JB, Vance J, Berthiaume LG. Palmitoylation of apolipoprotein B is required for proper intracellular sorting and transport of cholesteroyl esters and triglycerides. Mol Biol Cell. 2000;11:721–34.PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Chen R, Jiang X, Sun D, et al. Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. J Proteome Res. 2009;8:651–61.PubMedCrossRefGoogle Scholar
  88. 88.
    Liu T, Qian WJ, Gritsenko MA, et al. Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J Proteome Res. 2005;4:2070–80.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Yang CY, Gu ZW, Weng SA, et al. Structure of apolipoprotein B-100 of human low density lipoproteins. Arteriosclerosis. 1989;9:96–108.PubMedCrossRefGoogle Scholar
  90. 90.
    Sun HY, Chen SF, Lai MD, et al. Comparative proteomic profiling of plasma very-low-density and low-density lipoproteins. Clin Chim Acta. 2010;411:336–44.PubMedCrossRefGoogle Scholar
  91. 91.
    Yang CY, Chen SH, Gianturco SH, et al. Sequence, structure, receptor-binding domains and internal repeats of human apolipoprotein B-100. Nature. 1986;323:738–42.PubMedCrossRefGoogle Scholar
  92. 92.
    Yoshimoto R, Fujita Y, Kakino A, et al. The discovery of LOX-1, its ligands and clinical significance. Cardiovasc Drugs Ther. 2011;25:379–91.PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Chang PY, Chen YJ, Chang FH, et al. Aspirin protects human coronary artery endothelial cells against atherogenic electronegative LDL via an epigenetic mechanism: a novel cytoprotective role of aspirin in acute myocardial infarction. Cardiovasc Res. 2013;99:137–45.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Liang-Yin Ke
    • 1
    • 2
    • 3
  • Nicole Stancel
    • 1
  • Henry Bair
    • 1
    • 4
  • Chu-Huang Chen
    • 1
    • 2
    • 5
    • 6
  1. 1.Vascular and Medicinal ResearchTexas Heart InstituteHoustonUSA
  2. 2.Center for Lipid BiosciencesKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiung 807Taiwan
  3. 3.Department of Medical Laboratory Science and Biotechnology, College of Health SciencesKaohsiung Medical UniversityKaohsiungTaiwan
  4. 4.Department of BiochemistryRice UniversityHoustonUSA
  5. 5.L5 Research CenterChina Medical University Hospital, China Medical UniversityTaichungTaiwan
  6. 6.Section of Cardiovascular Research, Department of MedicineBaylor College of MedicineHoustonUSA

Personalised recommendations