Advertisement

CD39: Interface Between Vascular Thrombosis and Inflammation

  • Yogendra M. Kanthi
  • Nadia R. Sutton
  • David J. Pinsky
Vascular Biology (RS Rosenson, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Vascular Biology

Abstract

Extracellular nucleotides play a critical role in vascular thrombosis and inflammation. Alterations in purinergic extracellular nucleotide concentrations activate pathways that result in platelet degranulation and aggregation, and endothelial and leukocyte activation and recruitment. CD39, the dominant vascular nucleotidase, hydrolyzes ATP and ADP to provide the substrate for generation of the anti-inflammatory and antithrombotic mediator adenosine. The purinergic signaling system, with CD39 at its center, plays an important role in modulating vascular homeostasis and the response to vascular injury, as seen in clinically relevant diseases such as stroke, ischemia–reperfusion injury, and pulmonary hypertension. A growing body of knowledge of the purinergic signaling pathway implicates CD39 as a critical modulator of vascular thrombosis and inflammation. Therapeutic strategies targeting CD39 offer promising opportunities in the management of vascular thromboinflammatory diseases.

Keywords

CD39 ENTPD1 Ectonucleotidase Purinergic signaling Vascular inflammation Thrombosis Leokocyte trafficking Leokocyte self-regulation Stroke Myocardial ischemia Atherosclerosis Pulmonary hypertension Phosphodiesterases-3 ATP ADP Adenosine 

Notes

Acknowledgments

This work was supported in part by National Institutes of Health grant 5T32HL007853-17, the A. Alfred Taubman Medical Research Institute, and the J. Griswold Ruth, M.D., and Margery Hopkins Ruth Professorship.

Compliance with Ethics Guidelines

Conflict of Interest

Yogendra M. Kanthi, Nadia R. Sutton, and David J. Pinsky declare that they no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Schenk U, Westendorf AM, Radaelli E, Casati A, Ferro M, Fumagalli M, et al. Purinergic control of T cell activation by ATP released through pannexin-1 hemichannels. Sci Signal. 2008;1(39):ra6. doi: 10.1126/scisignal.1160583.PubMedGoogle Scholar
  2. 2.
    Kukulski F, Levesque SA, Sevigny J. Impact of ectoenzymes on p2 and p1 receptor signaling. Adv Pharmacol. 2011;61:263–99. doi: 10.1016/B978-0-12-385526-8.00009-6.PubMedCrossRefGoogle Scholar
  3. 3.
    Deaglio S, Robson SC. Ectonucleotidases as regulators of purinergic signaling in thrombosis, inflammation, and immunity. Adv Pharmacol. 2011;61:301–32. doi: 10.1016/B978-0-12-385526-8.00010-2.PubMedCrossRefGoogle Scholar
  4. 4.
    Bonner F, Borg N, Burghoff S, Schrader J. Resident cardiac immune cells and expression of the ectonucleotidase enzymes CD39 and CD73 after ischemic injury. PLoS One. 2012;7(4):e34730. doi: 10.1371/journal.pone.0034730.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Maliszewski CR, Delespesse GJ, Schoenborn MA, Armitage RJ, Fanslow WC, Nakajima T, et al. The CD39 lymphoid cell activation antigen. Molecular cloning and structural characterization. J Immunol. 1994;153(8):3574–83.PubMedGoogle Scholar
  6. 6.
    Pulte ED, Broekman MJ, Olson KE, Drosopoulos JH, Kizer JR, Islam N, et al. CD39/NTPDase-1 activity and expression in normal leukocytes. Thromb Res. 2007;121(3):309–17. doi: 10.1016/j.thromres.2007.04.008.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Behdad A, Sun X, Khalpey Z, Enjyoji K, Wink M, Wu Y, et al. Vascular smooth muscle cell expression of ectonucleotidase CD39 (ENTPD1) is required for neointimal formation in mice. Purinergic Signal. 2009;5(3):335–42. doi: 10.1007/s11302-009-9158-y.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Smith TM, Kirley TL. Cloning, sequencing, and expression of a human brain ecto-apyrase related to both the ecto-ATPases and CD39 ecto-apyrases1. Biochim Biophys Acta. 1998;1386(1):65–78.PubMedCrossRefGoogle Scholar
  9. 9.
    Koziak K, Kaczmarek E, Kittel A, Sevigny J, Blusztajn JK, Schulte Am Esch 2nd J, et al. Palmitoylation targets CD39/endothelial ATP diphosphohydrolase to caveolae. J Biol Chem. 2000;275(3):2057–62.PubMedCrossRefGoogle Scholar
  10. 10.••
    Baek AE, Kanthi Y, Sutton NR, Liao H, Pinsky DJ. Regulation of ecto-apyrase CD39 (ENTPD1) expression by phosphodiesterase III (PDE3). FASEB J. 2013;27(11):4419–28. doi: 10.1096/fj.13-234625. This is an important study demonstrating pharmacologic modulation of CD39 expression with existing drugs approved by the US Food and Drug Administration. Use of the PDE3 inhibitor family of pharmaceuticals represents a novel approach to harness CD39 expression.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Papanikolaou A, Papafotika A, Murphy C, Papamarcaki T, Tsolas O, Drab M, et al. Cholesterol-dependent lipid assemblies regulate the activity of the ecto-nucleotidase CD39. J Biol Chem. 2005;280(28):26406–14. doi: 10.1074/jbc.M413927200.PubMedCrossRefGoogle Scholar
  12. 12.
    Strohmeier GR, Lencer WI, Patapoff TW, Thompson LF, Carlson SL, Moe SJ, et al. Surface expression, polarization, and functional significance of CD73 in human intestinal epithelia. J Clin Invest. 1997;99(11):2588–601. doi: 10.1172/JCI119447.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Liao H, Hyman MC, Baek AE, Fukase K, Pinsky DJ. cAMP/CREB-mediated transcriptional regulation of ectonucleoside triphosphate diphosphohydrolase 1 (CD39) expression. J Biol Chem. 2010;285(19):14791–805. doi: 10.1074/jbc.M110.116905.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Pluskota E, Ma Y, Bledzka KM, Bialkowska K, Soloviev DA, Szpak D, et al. Kindlin-2 regulates hemostasis by controlling endothelial cell-surface expression of ADP/AMP catabolic enzymes via a clathrin-dependent mechanism. Blood. 2013;122(14):2491–9. doi: 10.1182/blood-2013-04-497669.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.••
    Chalmin F, Mignot G, Bruchard M, Chevriaux A, Vegran F, Hichami A, et al. Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression. Immunity. 2012;36(3):362–73. doi: 10.1016/j.immuni.2011.12.019. This is an important study that implicates CD39 in the mechanism of immune modulation by T helper 17 cells. It further identifies direct and indirect transcriptional signals that regulate CD39 expression under cellular stress.PubMedCrossRefGoogle Scholar
  16. 16.
    Hot A, Lavocat F, Lenief V, Miossec P. Simvastatin inhibits the pro-inflammatory and pro-thrombotic effects of IL-17 and TNF-alpha on endothelial cells. Ann Rheum Dis. 2013;72(5):754–60. doi: 10.1136/annrheumdis-2012-201887.PubMedCrossRefGoogle Scholar
  17. 17.
    Robson SC, Kaczmarek E, Siegel JB, Candinas D, Koziak K, Millan M, et al. Loss of ATP diphosphohydrolase activity with endothelial cell activation. J Exp Med. 1997;185(1):153–63.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Eltzschig HK, Kohler D, Eckle T, Kong T, Robson SC, Colgan SP. Central role of Sp1-regulated CD39 in hypoxia/ischemia protection. Blood. 2009;113(1):224–32. doi: 10.1182/blood-2008-06-165746.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Ogawa S, Clauss M, Kuwabara K, Shreeniwas R, Butura C, Koga S, et al. Hypoxia induces endothelial cell synthesis of membrane-associated proteins. Proc Natl Acad Sci U S A. 1991;88(21):9897–901.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD, Ye SQ, et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood. 2005;105(2):659–69. doi: 10.1182/blood-2004-07-2958.PubMedCrossRefGoogle Scholar
  21. 21.
    Banz Y, Beldi G, Wu Y, Atkinson B, Usheva A, Robson SC. CD39 is incorporated into plasma microparticles where it maintains functional properties and impacts endothelial activation. Br J Haematol. 2008;142(4):627–37. doi: 10.1111/j.1365-2141.2008.07230.x.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.•
    Visovatti SH, Hyman MC, Bouis D, Neubig R, McLaughlin VV, Pinsky DJ. Increased CD39 nucleotidase activity on microparticles from patients with idiopathic pulmonary arterial hypertension. PLoS One. 2012;7(7):e40829. doi: 10.1371/journal.pone.0040829. This is an important study that demonstrates a potential role for CD39 in pulmonary arterial hypertension, a devastating disease with poor prognosis and limited therapeutics.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Hyman MC, Petrovic-Djergovic D, Visovatti SH, Liao H, Yanamadala S, Bouis D, et al. Self-regulation of inflammatory cell trafficking in mice by the leukocyte surface apyrase CD39. J Clin Invest. 2009;119(5):1136–49. doi: 10.1172/JCI36433.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Enjyoji K, Sevigny J, Lin Y, Frenette PS, Christie PD, Esch 2nd JS, et al. Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nat Med. 1999;5(9):1010–7. doi: 10.1038/12447.PubMedCrossRefGoogle Scholar
  25. 25.
    Huttinger ZM, Milks MW, Nickoli MS, Aurand WL, Long LC, Wheeler DG, et al. Ectonucleotide triphosphate diphosphohydrolase-1 (CD39) mediates resistance to occlusive arterial thrombus formation after vascular injury in mice. Am J Pathol. 2012;181(1):322–33. doi: 10.1016/j.ajpath.2012.03.024.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Pinsky DJ, Broekman MJ, Peschon JJ, Stocking KL, Fujita T, Ramasamy R, et al. Elucidation of the thromboregulatory role of CD39/ectoapyrase in the ischemic brain. J Clin Invest. 2002;109(8):1031–40. doi: 10.1172/JCI10649.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Wheeler DG, Joseph ME, Mahamud SD, Aurand WL, Mohler PJ, Pompili VJ, et al. Transgenic swine: expression of human CD39 protects against myocardial injury. J Mol Cell Cardiol. 2012;52(5):958–61. doi: 10.1016/j.yjmcc.2012.01.002.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Cai M, Huttinger ZM, He H, Zhang W, Li F, Goodman LA, et al. Transgenic over expression of ectonucleotide triphosphate diphosphohydrolase-1 protects against murine myocardial ischemic injury. J Mol Cell Cardiol. 2011;51(6):927–35. doi: 10.1016/j.yjmcc.2011.09.003.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Dwyer KM, Robson SC, Nandurkar HH, Campbell DJ, Gock H, Murray-Segal LJ, et al. Thromboregulatory manifestations in human CD39 transgenic mice and the implications for thrombotic disease and transplantation. J Clin Invest. 2004;113(10):1440–6. doi: 10.1172/JCI19560.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    McRae JL, Russell PA, Chia JS, Dwyer KM. Overexpression of CD39 protects in a mouse model of preeclampsia. Nephrology. 2013;18(5):351–5. doi: 10.1111/nep.12058.PubMedCrossRefGoogle Scholar
  31. 31.
    Crikis S, Lu B, Murray-Segal LM, Selan C, Robson SC, D’Apice AJ, et al. Transgenic overexpression of CD39 protects against renal ischemia-reperfusion and transplant vascular injury. Am J Transplant. 2010;10(12):2586–95. doi: 10.1111/j.1600-6143.2010.03257.x.PubMedCrossRefGoogle Scholar
  32. 32.
    Hatakeyama K, Hao H, Imamura T, Ishikawa T, Shibata Y, Fujimura Y, et al. Relation of CD39 to plaque instability and thrombus formation in directional atherectomy specimens from patients with stable and unstable angina pectoris. Am J Cardiol. 2005;95(5):632–5. doi: 10.1016/j.amjcard.2004.11.012.PubMedCrossRefGoogle Scholar
  33. 33.
    Kaneider NC, Egger P, Dunzendorfer S, Noris P, Balduini CL, Gritti D, et al. Reversal of thrombin-induced deactivation of CD39/ATPDase in endothelial cells by HMG-CoA reductase inhibition: effects on Rho-GTPase and adenosine nucleotide metabolism. Arterioscler Thromb Vasc Biol. 2002;22(6):894–900.PubMedCrossRefGoogle Scholar
  34. 34.
    Kohler D, Eckle T, Faigle M, Grenz A, Mittelbronn M, Laucher S, et al. CD39/ectonucleoside triphosphate diphosphohydrolase 1 provides myocardial protection during cardiac ischemia/reperfusion injury. Circulation. 2007;116(16):1784–94. doi: 10.1161/CIRCULATIONAHA.107.690180.PubMedCrossRefGoogle Scholar
  35. 35.
    Yoshida O, Kimura S, Jackson EK, Robson SC, Geller DA, Murase N, et al. CD39 expression by hepatic myeloid dendritic cells attenuates inflammation in liver transplant ischemia-reperfusion injury in mice. Hepatology. 2013;58(6):2163–75. doi: 10.1002/hep.26593.PubMedCrossRefGoogle Scholar
  36. 36.
    Chen Y, Corriden R, Inoue Y, Yip L, Hashiguchi N, Zinkernagel A, et al. ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science. 2006;314(5806):1792–5. doi: 10.1126/science.1132559.PubMedCrossRefGoogle Scholar
  37. 37.
    Eltzschig HK, Thompson LF, Karhausen J, Cotta RJ, Ibla JC, Robson SC, et al. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism. Blood. 2004;104(13):3986–92.PubMedCrossRefGoogle Scholar
  38. 38.
    Reutershan J, Vollmer I, Stark S, Wagner R, Ngamsri KC, Eltzschig HK. Adenosine and inflammation: CD39 and CD73 are critical mediators in LPS-induced PMN trafficking into the lungs. FASEB J. 2009;23(2):473–82. doi: 10.1096/fj.08-119701.PubMedCrossRefGoogle Scholar
  39. 39.
    Corriden R, Chen Y, Inoue Y, Beldi G, Robson SC, Insel PA, et al. Ecto-nucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1/CD39) regulates neutrophil chemotaxis by hydrolyzing released ATP to adenosine. J Biol Chem. 2008;283(42):28480–6. doi: 10.1074/jbc.M800039200.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Kukulski F, Bahrami F, Ben Yebdri F, Lecka J, Martin-Satue M, Levesque SA, et al. NTPDase1 controls IL-8 production by human neutrophils. J Immunol. 2011;187(2):644–53. doi: 10.4049/jimmunol.1002680.PubMedCrossRefGoogle Scholar
  41. 41.
    Shah D, Romero F, Stafstrom W, Duong M, Summer R. Extracellular ATP mediates the late phase of neutrophil recruitment to the lung in murine models of acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2014;306(2):L152–61. doi: 10.1152/ajplung.00229.2013.PubMedCrossRefGoogle Scholar
  42. 42.
    Zanin RF, Braganhol E, Bergamin LS, Campesato LF, Filho AZ, Moreira JC, et al. Differential macrophage activation alters the expression profile of NTPDase and ecto-5′-nucleotidase. PLoS One. 2012;7(2):e31205. doi: 10.1371/journal.pone.0031205.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Csoka B, Selmeczy Z, Koscso B, Nemeth ZH, Pacher P, Murray PJ, et al. Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J. 2012;26(1):376–86. doi: 10.1096/fj.11-190934.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Hotchkiss RS, Coopersmith CM, McDunn JE, Ferguson TA. The sepsis seesaw: tilting toward immunosuppression. Nat Med. 2009;15(5):496–7. doi: 10.1038/nm0509-496.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Cohen HB, Briggs KT, Marino JP, Ravid K, Robson SC, Mosser DM. TLR stimulation initiates a CD39-based autoregulatory mechanism that limits macrophage inflammatory responses. Blood. 2013;122(11):1935–45. doi: 10.1182/blood-2013-04-496216.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Levesque SA, Kukulski F, Enjyoji K, Robson SC, Sevigny J. NTPDase1 governs P2X7-dependent functions in murine macrophages. Eur J Immunol. 2010;40(5):1473–85. doi: 10.1002/eji.200939741.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood. 2007;110(4):1225–32. doi: 10.1182/blood-2006-12-064527.PubMedCrossRefGoogle Scholar
  48. 48.
    Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med. 2007;204(6):1257–65. doi: 10.1084/jem.20062512.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Dwyer KM, Hanidziar D, Putheti P, Hill PA, Pommey S, McRae JL, et al. Expression of CD39 by human peripheral blood CD4+ CD25+ T cells denotes a regulatory memory phenotype. Am J Transplant. 2010;10(11):2410–20. doi: 10.1111/j.1600-6143.2010.03291.x.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Zhou Q, Yan J, Putheti P, Wu Y, Sun X, Toxavidis V, et al. Isolated CD39 expression on CD4+ T cells denotes both regulatory and memory populations. Am J Transplant. 2009;9(10):2303–11. doi: 10.1111/j.1600-6143.2009.02777.x.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Moncrieffe H, Nistala K, Kamhieh Y, Evans J, Eddaoudi A, Eaton S, et al. High expression of the ectonucleotidase CD39 on T cells from the inflamed site identifies two distinct populations, one regulatory and one memory T cell population. J Immunol. 2010;185(1):134–43. doi: 10.4049/jimmunol.0803474.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Thiolat A, Semerano L, Pers YM, Biton J, Lemeiter D, Portales P, et al. Interleukin-6 receptor blockade enhances CD39+ regulatory T cell development in rheumatoid arthritis and in experimental arthritis. Arthritis Rheumatol. 2014;66(2):273–83. doi: 10.1002/art.38246.PubMedCrossRefGoogle Scholar
  53. 53.
    Kansas GS, Wood GS, Tedder TF. Expression, distribution, and biochemistry of human CD39. Role in activation-associated homotypic adhesion of lymphocytes. J Immunol. 1991;146(7):2235–44.PubMedGoogle Scholar
  54. 54.
    la Sala A, Ferrari D, Corinti S, Cavani A, Di Virgilio F, Girolomoni G. Extracellular ATP induces a distorted maturation of dendritic cells and inhibits their capacity to initiate Th1 responses. J Immunol. 2001;166(3):1611–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Idzko M, Dichmann S, Ferrari D, Di Virgilio F, la Sala A, Girolomoni G, et al. Nucleotides induce chemotaxis and actin polymerization in immature but not mature human dendritic cells via activation of pertussis toxin-sensitive P2y receptors. Blood. 2002;100(3):925–32.PubMedCrossRefGoogle Scholar
  56. 56.
    Mizumoto N, Kumamoto T, Robson SC, Sevigny J, Matsue H, Enjyoji K, et al. CD39 is the dominant Langerhans cell-associated ecto-NTPDase: modulatory roles in inflammation and immune responsiveness. Nat Med. 2002;8(4):358–65. doi: 10.1038/nm0402-358.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yogendra M. Kanthi
    • 1
    • 3
  • Nadia R. Sutton
    • 1
    • 3
  • David J. Pinsky
    • 1
    • 2
    • 3
  1. 1.Division of Cardiovascular Medicine, Department of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborUSA
  2. 2.Department of Molecular & Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborUSA
  3. 3.Samuel and Jean Frankel Cardiovascular CenterUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations