Endothelial Dysfunction: Its Clinical Value and Methods of Assessment

  • Teresa Strisciuglio
  • Stefania De Luca
  • Ernesto Capuano
  • Rossella Luciano
  • Tullio Niglio
  • Bruno Trimarco
  • Gennaro Galasso
Cardiovascular Disease and Stroke (P Perrone-Filardi and S. Agewall, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Cardiovascular Disease and Stroke

Abstract

Endothelial dysfunction (ED) is a systemic disorder characterized by reduced production of nitric oxide. This pathologic condition, which impairs vascular homeostasis, leads to the loss of protective properties of endothelial cells and is related to the pathogenesis of cardiovascular diseases. ED may affect every vascular bed, accounting for several clinical implications, particularly when the coronary bed is affected. Although the reliability of ED as a cardiovascular disease surrogate is still debated, many methods for its assessment have been proposed. In this review, we underline the clinical value of ED in the cardiovascular field and summarize the principal methods currently available for its assessment.

Keywords

Coronary artery disease Endothelial dysfunction Flow mediated dilation Pulse amplitude tonometry 

Notes

Compliance with Ethics Guidelines

Conflict of Interest

Teresa Strisciuglio, Stefania De Luca, Ernesto Capuano, Rossella Luciano, Tullio Niglio, Bruno Trimarco, and Gennaro Galasso declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987;84(24):9265–9.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Drexler H. Nitric oxide and coronary endothelial dysfunction in humans. Cardiovasc Res. 1999;43(3):572–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A. 1991;88(11):4651–5.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Michelson AD, Benoit SE, Furman MI, Breckwoldt WL, Rohrer MJ, Barnard MR, et al. Effects of nitric oxide/EDRF on platelet surface glycoproteins. Am J Physiol. 1996;270(5 Pt 2):H1640–8.PubMedGoogle Scholar
  5. 5.
    Stamler JS, Lamas S, Fang FC. Nitrosylation. The prototypic redox-based signaling mechanism. Cell. 2001;106(6):675–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Radomski MW, Palmer RM, Moncada S. Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets. Br J Pharmacol. 1987;92(1):181–7.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288(5789):373–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Heistad DD, Armstrong ML, Marcus ML, Piegors DJ, Mark AL. Augmented responses to vasoconstrictor stimuli in hypercholesterolemic and atherosclerotic monkeys. Circ Res. 1984;54(6):711–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Barbato E, Piscione F, Bartunek J, Galasso G, Cirillo P, De Luca G, et al. Role of beta2 adrenergic receptors in human atherosclerotic coronary arteries. Circulation. 2005;111(3):288–94.PubMedCrossRefGoogle Scholar
  10. 10.
    Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109(23 Suppl 1):III27–32.PubMedGoogle Scholar
  11. 11.
    Zeiher AM, Drexler H, Wollschläger H, Just H. Modulation of coronary vasomotor tone in humans. Progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation. 1991;83(2):391–401.PubMedCrossRefGoogle Scholar
  12. 12.••
    Gargiulo P, Marciano C, Savarese G, D'Amore C, Paolillo S, Esposito G, et al. Endothelial dysfunction in type 2 diabetic patients with normal coronary arteries: a digital reactive hyperemia study. Int J Cardiol. 2013;165(1):67–71. This study demonstrated that diabetes could impair coronary endothelial dysfunction before atherosclerosis development and progression. These results have been obtained trough the EndoPAT method.PubMedCrossRefGoogle Scholar
  13. 13.
    Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med. 2007;356(8):830–40.PubMedCrossRefGoogle Scholar
  14. 14.
    Ong P, Athanasiadis A, Borgulya G, Mahrholdt H, Kaski JC, Sechtem U. High prevalence of a pathological response to acetylcholine testing in patients with stable angina pectoris and unobstructed coronary arteries. The ACOVA Study (Abnormal COronary VAsomotion in patients with stable angina and unobstructed coronary arteries). J Am Coll Cardiol. 2012;59:655–62.PubMedCrossRefGoogle Scholar
  15. 15.
    Lamendola P, Lanza GA, Spinelli A, Sgueglia GA, Di Monaco A, Barone L, et al. Long-term prognosis of patients with cardiac syndrome X. Int J Cardiol. 2010;140(2):197–9.PubMedCrossRefGoogle Scholar
  16. 16.•
    Crea F, Camici PG, Bairey Merz CN. Coronary microvascular dysfunction: an update. Eur Heart J. 2013 Dec 23. This review widely considers all types of endothelial dysfunction and its underlying mechanisms. Google Scholar
  17. 17.
    Lerman A, Zeiher AM. Endothelial function: cardiac events. Circulation. 2005;111(3):363–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Galasso G, Schiekofer S, D'Anna C, Gioia GD, Piccolo R, Niglio T, et al. No-reflow phenomenon: pathophysiology, diagnosis, prevention, and treatment. A review of the current literature and future perspectives. Angiology. 2014;65(3):180–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Muller O, Hamilos M, Bartunek J, Ulrichts H, Mangiacapra F, Holz JB, et al. Relation of endothelial function to residual platelet reactivity after clopidogrel in patients with stable angina pectoris undergoing percutaneous coronary intervention. Am J Cardiol. 2010;105(3):333–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Patti G, Pasceri V, Melfi R, Goffredo C, Chello M, D'Ambrosio A, et al. Impaired flow-mediated dilation and risk of restenosis in patients undergoing coronary stent implantation. Circulation. 2005;111(1):70–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Hamilos M, Sarma J, Ostojic M, Cuisset T, Sarno G, Melikian N, et al. Interference of drug-eluting stents with endothelium-dependent coronary vasomotion: evidence for device-specific responses. Circ Cardiovasc Interv. 2008;1(3):193–200.PubMedCrossRefGoogle Scholar
  22. 22.•
    Galasso G, De Rosa R, Ciccarelli M, Sorriento D, Del Giudice C, Strisciuglio T, et al. β2-Adrenergic receptor stimulation improves endothelial progenitor cell-mediated ischemic neoangiogenesis. Circ Res. 2013;112(7):1026–34. This article provides new insights of the biology and functions of EPCs.PubMedCrossRefGoogle Scholar
  23. 23.
    Wilkinson IB, Webb DJ. Venous occlusion plethysmography in cardiovascular research: methodology and clinical applications. Br J Clin Pharmacol. 2001;52(6):631–46.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Schindler TH, Schelbert HR, Quercioli A, Dilsizian V. Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. J Am Coll Cardiol. 2010;3:623–40.CrossRefGoogle Scholar
  25. 25.
    Hamada S, Nishiue T, Nakamura S, Sugiura T, Kamihata H, Miyoshi H, et al. TIMI frame count immediately after primary coronary angioplasty as a predictor of functional recovery in patients with TIMI 3 reperfused acute myocardial infarction. J Am Coll Cardiol. 2001;38(3):666–71.PubMedCrossRefGoogle Scholar
  26. 26.
    Henriques JP, Zijlstra F, van’t Hof AW, de Boer MJ, Dambrink JH, Gosselink M, et al. Angiographic assessment of reperfusion in acute myocardial infarction by myocardial blush grade. Circulation. 2003;107(16):2115–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Cahrbonneam F, Creager MA, et al. International Brachial Artery Reactivity Task Force. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol. 2002;39(2):257–65.PubMedCrossRefGoogle Scholar
  28. 28.
    Pellegrino T, Storto G, Filardi PP, Sorrentino AR, Silvestro A, Petretta M, et al. Relationship between brachial artery flow-mediated dilation and coronary flow reserve in patients with peripheral artery disease. J Nucl Med. 2005;46(12):1997–2002.PubMedGoogle Scholar
  29. 29.
    Brevetti G, Silvestro A, Schiano V, Chiariello M. Endothelial dysfunction and cardiovascular risk prediction in peripheral arterial disease: additive value of flow-mediated dilation to ankle-brachial pressure index. Circulation. 2003;108(17):2093–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Perrone-Filardi P, Cuocolo A, Brevetti G, Silvestro A, Storto G, Dellegrottaglie S, et al. Relation of brachial artery flow-mediated vasodilation to significant coronary artery disease in patients with peripheral arterial disease. Am J Cardiol. 2005;96(9):1337–41.PubMedCrossRefGoogle Scholar
  31. 31.
    Hashimoto M, Akishita M, Eto M, Ishikawa M, Kozaki K, Toba K, et al. Modulation of endothelium-dependent flow-mediated dilatation of the brachial artery by sex and menstrual cycle. Circulation. 1995;92(12):3431–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Bots ML, Westerink J, Rabelink TJ, de Koning EJ. Assessment of flow-mediated vasodilatation (FMD) of the brachial artery: effects of technical aspects of the FMD measurement on the FMD response. Eur Heart J. 2005;26(4):363–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Hijmering ML, Stroes ES, Olijhoek J, Hutten BA, Blankestijn PJ, Rabelink TJ. Sympathetic activation markedly reduces endothelium-dependent, flow-mediated vasodilation. J Am Coll Cardiol. 2002;39(4):683–8.PubMedCrossRefGoogle Scholar
  34. 34.
    McVeigh GE, Bratteli CW, Morgan DJ, et al. Age-related abnormalities in arterial compliance identified by pressure pulse contour analysis. Hypertension. 1999;33:1392–8.PubMedCrossRefGoogle Scholar
  35. 35.
    McVeigh GE, Brennan G, Hayes R, Cohn J, Finklestein S, Johnston D. Vascular abnormalities in non-insulin dependent diabetes mellitus identified by arterial waveform analysis. Am J Med. 1993;95:424–30.PubMedCrossRefGoogle Scholar
  36. 36.
    Celermajer DS. Reliable endothelial function testing: at our fingertips? Circulation. 2008;117(19):2428–30.PubMedCrossRefGoogle Scholar
  37. 37.
    Nohria A, Gerhard-Herman M, Creager MA, Hurley S, Mitra D, Ganz P. Role of nitric oxide in the regulation of digital pulse volume amplitude in humans. J Appl Physiol. 2006;101(2):545–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Hamburg NM, Keyes MJ, Larson MG, Vasan RS, Schnabel R, Pryde MM, et al. Cross-sectional relations of digital vascular function to cardiovascular risk factors in the Framingham Heart Study. Circulation. 2008;117(19):2467–74.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Bonetti PO, Pumper GM, Higano ST, Holmes Jr DR, Kuvin JT, Lerman A. Noninvasive identification of patients with early coronary atherosclerosis by assessment of digital reactive hyperemia. J Am Coll Cardiol. 2004;44(11):2137–41.PubMedCrossRefGoogle Scholar
  40. 40.
    Rubinshtein R, Kuvin JT, Soffler M, Lennon RJ, Lavi S, Nelson RE, et al. Assessment of endothelial function by non-invasive peripheral arterial tonometry predicts late cardiovascular adverse events. Eur Heart J. 2010;31(9):1142–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Moerland M, Kales AJ, Schrier L, van Dongen MG, Bradnock D, Burggraaf J. Evaluation of the EndoPAT as a Tool to Assess Endothelial Function. Int J Vasc Med. 2012;2012:904141.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Noble MI, Drake-Holland AJ, Vink H. Hypothesis: arterial glycocalyx dysfunction is the first step in the atherothrombotic process. QJM. 2008;101(7):513–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Constantinescu AA, Vink H, Spaan JA. Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscler Thromb Vasc Biol. 2003;23:1541–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Vink H, Constantinescu AA, Spaan JA. Oxidized lipoproteins degrade the endothelial surface layer. Circulation. 2000;101:1500–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Koo A, Dewey Jr CF, García-Cardeña G. Hemodynamic shear stress characteristic of atherosclerosis-resistant regions promotes glycocalyx formation in cultured endothelial cells. Am J Physiol Cell Physiol. 2013;304(2):C137–46.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Puri R, Leong DP, Nicholls SJ, Liew GY, Nelson AJ, Carbone A, et al. Coronary artery wall shear stress is associated with endothelial dysfunction and expansive arterial remodelling in patients with coronary artery disease. EuroIntervention. 2014 Jan 15.Google Scholar
  47. 47.
    Nieuwdorp M, van Haeften TW, Gouverneur MC, Mooij HL, van Lieshout MH, Levi M, et al. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes. 2006;55(2):480–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Bulut D, Maier K, Bulut-Streich N, Börgel J, Hanefeld C, Mügge A. Circulating endothelial microparticles correlate inversely with endothelial function in patients with ischemic left ventricular dysfunction. J Card Fail. 2008;14(4):336–40.PubMedCrossRefGoogle Scholar
  49. 49.
    Bernal-Mizrachi L, Jy W, Jimenez JJ, Pastor J, Mauro LM, Horstman LL, et al. High levels of circulating endothelial microparticles in patients with acute coronary syndromes. Am Heart J. 2003;145(6):962–70.PubMedCrossRefGoogle Scholar
  50. 50.
    Feng B, Chen Y, Luo Y, Chen M, Li X, Ni Y. Circulating level of microparticles and their correlation with arterial elasticity and endothelium-dependent dilation in patients with type 2 diabetes mellitus. Atherosclerosis. 2010;208(1):264–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Bulut D, Tüns H, Mügge A. CD31+/Annexin V + microparticles in healthy offsprings of patients with coronary artery disease. Eur J Clin Invest. 2009;39(1):17–22.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Teresa Strisciuglio
    • 1
  • Stefania De Luca
    • 1
  • Ernesto Capuano
    • 1
  • Rossella Luciano
    • 1
  • Tullio Niglio
    • 1
  • Bruno Trimarco
    • 1
  • Gennaro Galasso
    • 1
  1. 1.Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly

Personalised recommendations