The Endothelium in Diabetic Nephropathy

Vascular Biology(RS Rosenson, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Vascular Biology

Abstract

Diabetes is characterised by widespread endothelial cell dysfunction that underlies the development of both the micro- and macrovascular complications of the disease, including nephropathy, cardiomyopathy, and non-proliferative retinopathy. In the kidney, major changes are noted in glomerular endothelial cell structure in their fenestrations and glycocalyx. These changes, along with endothelial cell loss and capillary rarefaction in both the glomerulus and tubulointerstitium, lead to the progressive loss of glomerular filtration that render diabetes the most common cause of end-stage renal disease in much of the developed world. New treatments in diabetes that directly address the abnormal structure and function of the endothelial cell are desperately needed.

Keywords

Endothelial Diabetes Glycocalyx Proteoglycans Fenestrae Glomerular filtration Fibrosis Ischaemia Hypoperfusion Capillary rarefaction Endothelial-mesenchymal transition Vascular endothelial growth factor Transforming growth factor-ß 

Notes

Acknowledgements

The author regrets that, owing to space constraints, much of the excellent work of many researchers in the area has not been included in this review. The author acknowledges the generous support of grants from the Canadian Institutes of Health Research, Heart and Stroke Foundation of Canada, and the Kidney Foundation of Canada. Dr. Gilbert is the Canada Research Chair in Diabetes Complications, and support for this work is thanks in part to the Canada Research Chair Program.

Compliance with Ethics Guidelines

Conflict of Interest

Richard E. Gilbert is a founder and shareholder in Fibrotech Therapeutics Pty Ltd., and has received consulting fees from Mesoblast Ltd. and honoraria for lectures and research grants from Astra-Zeneca, Bristol-Myers Squibb, and Merck.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.•
    Siddiqi FS, Advani A. Endothelial-podocyte crosstalk: the missing link between endothelial dysfunction and albuminuria in diabetes. Diabetes. 2013;62:3647–55. This is an excellent up-to-date review on the role of the podocyte in maintaining endothelial cell integrity in diabetes. PubMedCrossRefGoogle Scholar
  2. 2.
    Satchell SC, Braet F. Glomerular endothelial cell fenestrations: an integral component of the glomerular filtration barrier. Am J Physiol Renal Physiol. 2009;296:F947–56.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Nielsen S, Kwon T-H, Fenton RA, Praetorius J: Anatomy of the Kidney. In Brenner and Rector's the Kidney al. MWTe, Ed. Philadelphia, PA, Elsevier, 2012, p. 326-352.Google Scholar
  4. 4.
    Haraldsson B, Jeansson M. Glomerular filtration barrier. Curr Opin Nephrol Hypertens. 2009;18:331–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Obeidat M, Obeidat M, Ballermann BJ. Glomerular endothelium: a porous sieve and formidable barrier. Exp Cell Res. 2012;318:964–72.PubMedCrossRefGoogle Scholar
  6. 6.
    Toyoda M, Najafian B, Kim Y, Caramori ML, Mauer M. Podocyte detachment and reduced glomerular capillary endothelial fenestration in human type 1 diabetic nephropathy. Diabetes. 2007;56:2155–60.PubMedCrossRefGoogle Scholar
  7. 7.•
    Weil EJ, Lemley KV, Mason CC, Yee B, Jones LI, Blouch K, et al. Podocyte detachment and reduced glomerular capillary endothelial fenestration promote kidney disease in type 2 diabetic nephropathy. Kidney Int. 2012;82:1010–7. This is an important study that explores the relationship between glomerular capillary endothelial fenestration and declining kidney fuction in diabetic nephropathy in humans. PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Eremina V, Sood M, Haigh J, Nagy A, Lajoie G, Ferrara N, et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest. 2003;111:707–16.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Advani A, Kelly DJ, Advani SL, Cox AJ, Thai K, Zhang Y, et al. Role of VEGF in maintaining renal structure and function under normotensive and hypertensive conditions. Proc Natl Acad Sci U S A. 2007;104:14448–53.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Levine RJ, Maynard SE, Qian C, Lim KH, England LJ, Yu KF, et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med. 2004;350:672–83.PubMedCrossRefGoogle Scholar
  11. 11.
    Pagtalunan ME, Miller PL, Jumping-Eagle S, Nelson RG, Myers BD, Rennke HG, et al. Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest. 1997;99:342–8.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Haraldsson B, Nystrom J, Deen WM. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol Rev. 2008;88:451–87.PubMedCrossRefGoogle Scholar
  13. 13.
    Haraldsson B, Nystrom J. The glomerular endothelium: new insights on function and structure. Curr Opin Nephrol Hypertens. 2012;21:258–63.PubMedCrossRefGoogle Scholar
  14. 14.
    Rosenzweig LJ, Kanwar YS. Removal of sulfated (heparan sulfate) or nonsulfated (hyaluronic acid) glycosaminoglycans results in increased permeability of the glomerular basement membrane to 125I-bovine serum albumin. Lab Invest. 1982;47:177–84.PubMedGoogle Scholar
  15. 15.
    van den Born J, van den Heuvel LP, Bakker MA, Veerkamp JH, Assmann KJ, Berden JH. A monoclonal antibody against GBM heparan sulfate induces an acute selective proteinuria in rats. Kidney Int. 1992;41:115–23.PubMedCrossRefGoogle Scholar
  16. 16.
    van den Born J, van Kraats AA, Bakker MA, Assmann KJ, Dijkman HB, van der Laak JA, et al. Reduction of heparan sulphate-associated anionic sites in the glomerular basement membrane of rats with streptozotocin-induced diabetic nephropathy. Diabetologia. 1995;38:1169–75.PubMedCrossRefGoogle Scholar
  17. 17.
    Raats CJ, Van Den Born J, Berden JH. Glomerular heparan sulfate alterations: mechanisms and relevance for proteinuria. Kidney Int. 2000;57:385–400.PubMedCrossRefGoogle Scholar
  18. 18.
    Goldberg S, Harvey SJ, Cunningham J, Tryggvason K, Miner JH. Glomerular filtration is normal in the absence of both agrin and perlecan-heparan sulfate from the glomerular basement membrane. Nephrol Dial Transplant. 2009;24:2044–51.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    van den Hoven MJ, Wijnhoven TJ, Li JP, Zcharia E, Dijkman HB, Wismans RG, et al. Reduction of anionic sites in the glomerular basement membrane by heparanase does not lead to proteinuria. Kidney Int. 2008;73:278–87.PubMedCrossRefGoogle Scholar
  20. 20.••
    Gil N, Goldberg R, Neuman T, Garsen M, Zcharia E, Rubinstein AM, et al. Heparanase is essential for the development of diabetic nephropathy in mice. Diabetes. 2012;61:208–16. This study not only examines the role of heparanase in diabetic nephropathy using knockout mice but also shows the therapeutic effects of administering a specific heparanase inhibitor. PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    van den Hoven MJ, Rops AL, Bakker MA, Aten J, Rutjes N, Roestenberg P, et al. Increased expression of heparanase in overt diabetic nephropathy. Kidney Int. 2006;70:2100–8.PubMedGoogle Scholar
  22. 22.
    Kuwabara A, Satoh M, Tomita N, Sasaki T, Kashihara N. Deterioration of glomerular endothelial surface layer induced by oxidative stress is implicated in altered permeability of macromolecules in Zucker fatty rats. Diabetologia. 2010;53:2056–65.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    van den Hoven MJ, Waanders F, Rops AL, Kramer AB, van Goor H, Berden JH, et al. Regulation of glomerular heparanase expression by aldosterone, angiotensin II and reactive oxygen species. Nephrol Dial Transplant. 2009;24:2637–45.PubMedCrossRefGoogle Scholar
  24. 24.
    Packham DK, Wolfe R, Reutens AT, Berl T, Heerspink HL, Rohde R, et al. Collaborative study G: Sulodexide fails to demonstrate renoprotection in overt type 2 diabetic nephropathy. J Am Soc Nephrol. 2012;23:123–30.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Lewis EJ, Lewis JB, Greene T, Hunsicker LG, Berl T, Pohl MA, et al. Collaborative study G: Sulodexide for kidney protection in type 2 diabetes patients with microalbuminuria: a randomized controlled trial. Am J Kidney Dis. 2011;58:729–36.PubMedCrossRefGoogle Scholar
  26. 26.
    Levidiotis V, Freeman C, Tikellis C, Cooper ME, Power DA. Heparanase inhibition reduces proteinuria in a model of accelerated anti-glomerular basement membrane antibody disease. Nephrol (Carlton). 2005;10:167–73.CrossRefGoogle Scholar
  27. 27.
    Levidiotis V, Freeman C, Tikellis C, Cooper ME, Power DA. Heparanase is involved in the pathogenesis of proteinuria as a result of glomerulonephritis. J Am Soc Nephrol. 2004;15:68–78.PubMedCrossRefGoogle Scholar
  28. 28.
    Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, Jensen T, Kofoed-Enevoldsen A. Albuminuria reflects widespread vascular damage: the Steno hypothesis. Diabetologia. 1989;32:219–26.PubMedCrossRefGoogle Scholar
  29. 29.
    Broekhuizen LN, Lemkes BA, Mooij HL, Meuwese MC, Verberne H, Holleman F, et al. Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia. 2010;53:2646–55.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Nieuwdorp M, Mooij HL, Kroon J, Atasever B, Spaan JA, Ince C, et al. Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes. 2006;55:1127–32.PubMedCrossRefGoogle Scholar
  31. 31.
    Mauer S, Steffes M, Ellis E, Sutherland D, Brown D, Goetz F. Structural-functional relationships in diabetic nephropathy. J Clin Invest. 1984;74:1143–55.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Laplante P, Sirois I, Raymond MA, Kokta V, Beliveau A, Prat A, et al. Caspase-3-mediated secretion of connective tissue growth factor by apoptotic endothelial cells promotes fibrosis. Cell Death Differ. 2010;17:291–303.PubMedCrossRefGoogle Scholar
  33. 33.
    Ho FM, Liu SH, Liau CS, Huang PJ, Lin-Shiau SY. High glucose-induced apoptosis in human endothelial cells is mediated by sequential activations of c-Jun NH(2)-terminal kinase and caspase-3. Circulation. 2000;101:2618–24.PubMedCrossRefGoogle Scholar
  34. 34.
    Aoki M, Nata T, Morishita R, Matsushita H, Nakagami H, Yamamoto K, et al. Endothelial apoptosis induced by oxidative stress through activation of NF-kappaB: antiapoptotic effect of antioxidant agents on endothelial cells. Hypertension. 2001;38:48–55.PubMedCrossRefGoogle Scholar
  35. 35.
    Nakagami H, Morishita R, Yamamoto K, Yoshimura SI, Taniyama Y, Aoki M, et al. Phosphorylation of p38 mitogen-activated protein kinase downstream of bax-caspase-3 pathway leads to cell death induced by high D-glucose in human endothelial cells. Diabetes. 2001;50:1472–81.PubMedCrossRefGoogle Scholar
  36. 36.
    Ho FM, Lin WW, Chen BC, Chao CM, Yang CR, Lin LY, et al. High glucose-induced apoptosis in human vascular endothelial cells is mediated through NF-kappaB and c-Jun NH2-terminal kinase pathway and prevented by PI3K/Akt/eNOS pathway. Cell Signal. 2006;18:391–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Behl Y, Krothapalli P, Desta T, Roy S, Graves DT. FOXO1 plays an important role in enhanced microvascular cell apoptosis and microvascular cell loss in type 1 and type 2 diabetic rats. Diabetes. 2009;58:917–25.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Kageyama S, Yokoo H, Tomita K, Kageyama-Yahara N, Uchimido R, Matsuda N, et al. High glucose-induced apoptosis in human coronary artery endothelial cells involves up-regulation of death receptors. Cardiovasc Diabetol. 2011;10:73.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Li Volti G, Seta F, Schwartzman ML, Nasjletti A, Abraham NG. Heme oxygenase attenuates angiotensin II-mediated increase in cyclooxygenase-2 activity in human femoral endothelial cells. Hypertension. 2003;41:715–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Bohle A, Mackensen-Haen S, Wehrmann M. Significance of postglomerular capillaries in the pathogenesis of chronic renal failure. Kidney Blood Press Res. 1996;19:191–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Fine LG, Norman JT. Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics. Kidney Int. 2008;74:867–72.PubMedCrossRefGoogle Scholar
  42. 42.
    Kang DH, Kanellis J, Hugo C, Truong L, Anderson S, Kerjaschki D, et al. Role of the microvascular endothelium in progressive renal disease. J Am Soc Nephrol. 2002;13:806–16.PubMedCrossRefGoogle Scholar
  43. 43.
    Cooper ME, Vranes D, Youssef S, Stacker SA, Cox AJ, Rizkalla B, et al. Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes. Diabetes. 1999;48:2229–39.PubMedCrossRefGoogle Scholar
  44. 44.••
    Sivaskandarajah GA, Jeansson M, Maezawa Y, Eremina V, Baelde HJ, Quaggin SE. Vegfa protects the glomerular microvasculature in diabetes. Diabetes. 2012;61:2958–66. This study shows that upregulation of VEGFA protects the kidney microvasculature from diabetes-induced injury and that reduction of VEGFA in diabetes may be harmful. PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Kelly DJ, Hepper C, Wu LL, Cox AJ, Gilbert RE. Vascular endothelial growth factor expression and glomerular endothelial cell loss in the remnant kidney model. Nephrol Dial Transplant. 2003;18:1286–92.PubMedCrossRefGoogle Scholar
  46. 46.
    Najafian B, Alpers CE, Fogo AB. Pathology of human diabetic nephropathy. Contrib Nephrol. 2011;170:36–47.PubMedCrossRefGoogle Scholar
  47. 47.
    Baelde HJ, Eikmans M, Doran PP, Lappin DW, de Heer E, Bruijn JA. Gene expression profiling in glomeruli from human kidneys with diabetic nephropathy. Am J Kidney Dis. 2004;43:636–50.PubMedCrossRefGoogle Scholar
  48. 48.
    Lindenmeyer MT, Kretzler M, Boucherot A, Berra S, Yasuda Y, Henger A, et al. Interstitial vascular rarefaction and reduced VEGF-A expression in human diabetic nephropathy. J Am Soc Nephrol. 2007;18:1765–76.PubMedCrossRefGoogle Scholar
  49. 49.
    Gilbert RE, McNally PG, Cox A, Dziadek M, Rumble J, Cooper ME, et al. SPARC gene expression is reduced in early diabetes related kidney growth. Kidney Int. 1995;48:1216–25.PubMedCrossRefGoogle Scholar
  50. 50.
    Advani A, Gilbert RE: The endothelium in diabetic nephropathy. Seminars in nephrology 2011:In Press 2011.Google Scholar
  51. 51.
    Egan CG, Lavery R, Caporali F, Fondelli C, Laghi-Pasini F, Dotta F, et al. Generalised reduction of putative endothelial progenitors and CXCR4-positive peripheral blood cells in type 2 diabetes. Diabetologia. 2008;51:1296–305.PubMedCrossRefGoogle Scholar
  52. 52.
    Fadini GP, Boscaro E, de Kreutzenberg S, Agostini C, Seeger F, Dimmeler S, et al. Time course and mechanisms of circulating progenitor cell reduction in the natural history of type 2 diabetes. Diabetes Care. 2010;33:1097–102.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Loomans CJ, de Koning EJ, Staal FJ, Rookmaaker MB, Verseyden C, de Boer HC, et al. Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes. 2004;53:195–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Dessapt C, Karalliedde J, Hernandez-Fuentes M, Martin PP, Maltese G, Dattani N, et al. Circulating vascular progenitor cells in patients with type 1 diabetes and microalbuminuria. Diabetes Care. 2010;33:875–7.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Makino H, Okada S, Nagumo A, Sugisawa T, Miyamoto Y, Kishimoto I, et al. Decreased circulating CD34+ cells are associated with progression of diabetic nephropathy. Diabet Med. 2009;26:171–3.PubMedCrossRefGoogle Scholar
  56. 56.
    Caballero S, Sengupta N, Afzal A, Chang KH, Li Calzi S, Guberski DL, et al. Ischemic vascular damage can be repaired by healthy, but not diabetic, endothelial progenitor cells. Diabetes. 2007;56:960–7.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR, et al. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation. 2002;106:2781–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Segal MS, Shah R, Afzal A, Perrault CM, Chang K, Schuler A, et al. Nitric oxide cytoskeletal-induced alterations reverse the endothelial progenitor cell migratory defect associated with diabetes. Diabetes. 2006;55:102–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Potente M, Ghaeni L, Baldessari D, Mostoslavsky R, Rossig L, Dequiedt F, et al. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev. 2007;21:2644–58.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Roy S, Sala R, Cagliero E, Lorenzi M. Overexpression of fibronectin induced by diabetes or high glucose: phenomenon with a memory. Proc Natl Acad Sci U S A. 1990;87:404–8.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Yuen DA, Zhang Y, Thai K, Spring C, Chan L, Guo X, et al. Angiogenic dysfunction in bone marrow-derived early outgrowth cells from diabetic animals is attenuated by SIRT1 activation. Stem Cells Transll Med. 2012;1:921–6.CrossRefGoogle Scholar
  62. 62.
    He J, Xu Y, Koya D, Kanasaki K. Role of the endothelial-to-mesenchymal transition in renal fibrosis of chronic kidney disease. Clin Exp Nephrol. 2013;17:488–97.PubMedCrossRefGoogle Scholar
  63. 63.
    Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol. 2008;19:2282–7.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Li J, Qu X, Bertram JF. Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice. Am J Pathol. 2009;175:1380–8.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Wu L, Cox A, Roe C, Dziadek M, Cooper ME, Gilbert RE. Transforming growth factor ß1 and renal injury following subtotal nephrectomy in the rat: Role of the renin-angiotensin system. Kidney Int. 1997;51:1553–67.PubMedCrossRefGoogle Scholar
  66. 66.
    Gilbert RE, Zhang Y, Williams SJ, Zammit SC, Stapleton DI, Cox AJ, et al. A purpose-synthesised anti-fibrotic agent attenuates experimental kidney diseases in the rat. PLoS One. 2012;7:e47160.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Gilbert RE, Zhang Y, Yuen DA. Cell therapy for diabetic nephropathy: is the future, now? Semin Nephrol. 2012;32:486–93.PubMedCrossRefGoogle Scholar
  68. 68.
    Yuen DA, Connelly KA, Advani A, Liao C, Kuliszewski MA, Trogadis J, et al. Culture-modified bone marrow cells attenuate cardiac and renal injury in a chronic kidney disease rat model via a novel antifibrotic mechanism. PLoS One. 2010;5:e9543.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Gilbert RE. Endothelial loss and repair in the vascular complications of diabetes: pathogenetic mechanisms and therapeutic implications. Circ J. 2013;77:849–56.PubMedCrossRefGoogle Scholar
  70. 70.
    Gilbert R. Augmenting endothelial repair in diabetes: role of bone marrow derived cells. Can J Diabetes. 2013;37:315–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Keenan Research Centre of the Li Ka Shing Knowledge InstituteSt. Michael’s HospitalTorontoCanada

Personalised recommendations