Flavonoids from Fruit and Vegetables: A Focus on Cardiovascular Risk Factors

  • J. Y. Toh
  • Verena M. H. Tan
  • Paul C. Y. Lim
  • S. T. Lim
  • Mary F. F. ChongEmail author
Nutrition (BV Howard, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Nutrition


Epidemiological studies suggest that high intakes of dietary flavonoids are associated with decreased cardiovascular disease mortality and risk factors. Less is known about the cardioprotective effects of flavonoids from fruit and vegetables. This review summarizes data from studies which examine the effects of commonly consumed fruit and vegetables on cardiovascular disease risk biomarkers in healthy volunteers or at-risk individuals. Although flavonoids from apples, berries, and onions appear to impact positively on blood pressure, vascular function, and serum lipid levels, further research is required to find out the optimal quantity and food matrix for conferring substantial clinical benefit. The benefits from citrus flavonoids are still inconclusive. Further robust, longer-term dietary intervention studies, with the inclusion of placebo or control arms, are required to improve the credibility of the findings and confirm current observations. An improved understanding of the impact of flavonoids from fruit and vegetables can help one make discerning food choices for optimal cardiovascular health.


Fruit and vegetables Flavonoids Cardiovascular risk Vascular function Blood lipids Blood pressure 


Conflict of Interest

J.Y. Toh, Verena M.H. Tan, Paul C.Y. Lim, S.T. Lim, and Mary F.F. Chong declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    •• Corcoran MP, McKay DL, Blumberg JB. Flavonoid basics: chemistry, sources, mechanisms of action, and safety. J Nutr Gerontol Geriatr. 2012;31(3):176–89. doi: 10.1080/21551197.2012.698219. This article offers comprehensive information on flavonoids, along with details on flavonoid content in various important food sources.PubMedCrossRefGoogle Scholar
  2. 2.
    Hertog MG, Feskens EJ, Hollman PC, et al. Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen elderly study. Lancet. 1993;342(8878):1007–11.PubMedCrossRefGoogle Scholar
  3. 3.
    Mink PJ, Scrafford CG, Barraj LM, et al. Flavonoid intake and cardiovascular disease mortality: A prospective study in postmenopausal women. Am J Clin Nutr. 2007;85(3):895–909.PubMedGoogle Scholar
  4. 4.
    Mursu J, Nurmi T, Tuomainen TP, et al. The intake of flavonoids and carotid atherosclerosis: The Kuopio ischaemic heart disease risk factor study. Br J Nutr. 2007;98(4):814–8. doi: 10.1017/S0007114507744410.PubMedCrossRefGoogle Scholar
  5. 5.
    Cassidy A, O'Reilly EJ, Kay C, et al. Habitual intake of flavonoid subclasses and incident hypertension in adults. Am J Clin Nutr. 2011;93(2):338–47. doi: 10.3945/ajcn.110.006783.PubMedCrossRefGoogle Scholar
  6. 6.
    Kay CD, Hooper L, Kroon PA, et al. Relative impact of flavonoid composition, dose and structure on vascular function: A systematic review of randomised controlled trials of flavonoid-rich food products. Mol Nutr Food Res. 2012;56(11):1605–16. doi: 10.1002/mnfr.201200363.PubMedCrossRefGoogle Scholar
  7. 7.
    Mulvihill EE, Huff MW. Antiatherogenic properties of flavonoids: Implications for cardiovascular health. Can J Cardiol. 2010;26(A):17A–21A.PubMedCrossRefGoogle Scholar
  8. 8.
    El Haouari M, Rosado JA. Modulation of platelet function and signaling by flavonoids. Mini Rev Med Chem. 2011;11(2):131–42.PubMedCrossRefGoogle Scholar
  9. 9.
    Siasos G, Tousoulis D, Tsigkou V, et al. Flavonoids in atherosclerosis: An overview of their mechanisms of action. Curr Med Chem. 2013;20(21):2641–60.PubMedCrossRefGoogle Scholar
  10. 10.
    Gresele P, Cerletti C, Guglielmini G, et al. Effects of resveratrol and other wine polyphenols on vascular function: An update. J Nutr Biochem. 2011;22(3):201–11. doi: 10.1016/j.jnutbio.2010.07.004.PubMedCrossRefGoogle Scholar
  11. 11.
    Heiss C, Schroeter H, Balzer J, et al. Endothelial function, nitric oxide, and cocoa flavanols. J Cardiovasc Pharmacol. 2006;47(2):S128–35. discussion S72-6.PubMedCrossRefGoogle Scholar
  12. 12.
    Grassi D, Desideri G, Croce G, et al. Flavonoids, vascular function and cardiovascular protection. Curr Pharm Des. 2009;15(10):1072–84.PubMedCrossRefGoogle Scholar
  13. 13.
    Dauchet L, Amouyel P, Dallongeville J. Fruits, vegetables and coronary heart disease. Nat Rev Cardiol. 2009;6(9):599–608. doi: 10.1038/nrcardio.2009.131.PubMedCrossRefGoogle Scholar
  14. 14.
    Lusis AJ. Atherosclerosis. Nature. 2000;407(6801):233–41. doi: 10.1038/35025203.PubMedCrossRefGoogle Scholar
  15. 15.
    Collins R, Peto R, MacMahon S, et al. Blood pressure, stroke, and coronary heart disease. Part 2, short-term reductions in blood pressure: Overview of randomised drug trials in their epidemiological context. Lancet. 1990;335(8693):827–38.PubMedCrossRefGoogle Scholar
  16. 16.
    Aviram M. Hyperlipidaemia and cardiovascular disease. Curr Opin Lipidol. 2007;18(4):473–5. doi: 10.1097/MOL.0b013e32823bcb28.PubMedCrossRefGoogle Scholar
  17. 17.
    Vita JA, Keaney Jr JF. Endothelial function: A barometer for cardiovascular risk? Circulation. 2002;106(6):640–2.PubMedCrossRefGoogle Scholar
  18. 18.
    Vinson JA, Su X, Zubik L, Bose P. Phenol antioxidant quantity and quality in foods: Fruits. J Agric Food Chem. 2001;49(11):5315–21.PubMedCrossRefGoogle Scholar
  19. 19.
    Knekt P, Jarvinen R, Seppanen R, et al. Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am J Epidemiol. 1997;146(3):223–30.PubMedCrossRefGoogle Scholar
  20. 20.
    Bondonno CP, Yang X, Croft KD, et al. Flavonoid-rich apples and nitrate-rich spinach augment nitric oxide status and improve endothelial function in healthy men and women: a randomized controlled trial. Free Radic Biol Med. 2012;52(1):95–102. doi: 10.1016/j.freeradbiomed.2011.09.028.PubMedCrossRefGoogle Scholar
  21. 21.
    Auclair S, Chironi G, Milenkovic D, et al. The regular consumption of a polyphenol-rich apple does not influence endothelial function: A randomised double-blind trial in hypercholesterolemic adults. Eur J Clin Nutr. 2010;64(10):1158–65. doi: 10.1038/ejcn.2010.135.PubMedCrossRefGoogle Scholar
  22. 22.
    Vafa MR, Haghighatjoo E, Shidfar F, et al. Effects of apple consumption on lipid profile of hyperlipidemic and overweight men. Int J Prev Med. 2011;2(2):94–100.PubMedGoogle Scholar
  23. 23.
    Nagasako-Akazome Y, Kanda T, Ohtake Y, et al. Apple polyphenols influence cholesterol metabolism in healthy subjects with relatively high body mass index. J Oleo Sci. 2007;56(8):417–28.PubMedCrossRefGoogle Scholar
  24. 24.
    • Ravn-Haren G, Dragsted LO, Buch-Andersen T, et al. Intake of whole apples or clear apple juice has contrasting effects on plasma lipids in healthy volunteers. Eur J Nutr. 2012. doi: 10.1007/s00394-012-0489-z. This article looks at the effects of food processing on the flavonoid content of apples and the subsequent effect on CVD risk factors. The results revealed that besides flavonoids, the lack of soluble pectins in clear apple juice as compared with whole apples also had a role to play in improving the lipid profile of the subjects.PubMedGoogle Scholar
  25. 25.
    Tripoli E, Guardia ML, Giammanco S, et al. Citrus flavonoids: molecular structure, biological activity and nutritional properties: A review. Food Chem. 2007;104(2):466–79. doi: 10.1016/j.foodchem.2006.11.054.CrossRefGoogle Scholar
  26. 26.
    Morand C, Dubray C, Milenkovic D, et al. Hesperidin contributes to the vascular protective effects of orange juice: A randomized crossover study in healthy volunteers. Am J Clin Nutr. 2011;93(1):73–80. doi: 10.3945/ajcn.110.004945.PubMedCrossRefGoogle Scholar
  27. 27.
    Rizza S, Muniyappa R, Iantorno M, et al. Citrus polyphenol hesperidin stimulates production of nitric oxide in endothelial cells while improving endothelial function and reducing inflammatory markers in patients with metabolic syndrome. J Clin Endocrinol Metab. 2011;96(5):E782–92. doi: 10.1210/jc.2010-2879.PubMedCrossRefGoogle Scholar
  28. 28.
    Gorinstein S, Caspi A, Libman I, et al. Preventive effects of diets supplemented with sweetie fruits in hypercholesterolemic patients suffering from coronary artery disease. Prev Med. 2004;38(6):841–7. doi: 10.1016/j.ypmed.2003.12.021.PubMedCrossRefGoogle Scholar
  29. 29.
    Gorinstein S, Caspi A, Libman I, et al. Red grapefruit positively influences serum triglyceride level in patients suffering from coronary atherosclerosis: studies in vitro and in humans. J Agric Food Chem. 2006;54(5):1887–92. doi: 10.1021/jf058171g.PubMedCrossRefGoogle Scholar
  30. 30.
    Craig WJ. Phytochemicals: Guardians of our health. J Am Diet Assoc. 1997;97(10 Suppl 2):S199–204.PubMedCrossRefGoogle Scholar
  31. 31.
    Jung UJ, Kim HJ, Lee JS, et al. Naringin supplementation lowers plasma lipids and enhances erythrocyte antioxidant enzyme activities in hypercholesterolemic subjects. Clin Nutr. 2003;22(6):561–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Demonty I, Lin Y, Zebregs YE, et al. The citrus flavonoids hesperidin and naringin do not affect serum cholesterol in moderately hypercholesterolemic men and women. J Nutr. 2010;140(9):1615–20. doi: 10.3945/jn.110.124735.PubMedCrossRefGoogle Scholar
  33. 33.
    Backman WD, Bakhai A. A more balanced approach to drug-grapefruit juice interactions. BMJ. 2013;346:f1073. doi: 10.1136/bmj.f1073.PubMedCrossRefGoogle Scholar
  34. 34.
    Basu A, Rhone M, Lyons TJ. Berries: Emerging impact on cardiovascular health. Nutr Rev. 2010;68(3):168–77. doi: 10.1111/j.1753-4887.2010.00273.x.PubMedCrossRefGoogle Scholar
  35. 35.
    Erlund I, Koli R, Alfthan G, et al. Favorable effects of berry consumption on platelet function, blood pressure, and HDL cholesterol. Am J Clin Nutr. 2008;87(2):323–31.PubMedGoogle Scholar
  36. 36.
    Basu A, Du M, Leyva MJ, et al. Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J Nutr. 2010;140(9):1582–7. doi: 10.3945/jn.110.124701.PubMedCrossRefGoogle Scholar
  37. 37.
    Jennings A, Welch AA, Fairweather-Tait SJ, et al. Higher anthocyanin intake is associated with lower arterial stiffness and central blood pressure in women. Am J Clin Nutr. 2012;96(4):781–8. doi: 10.3945/ajcn.112.042036.PubMedCrossRefGoogle Scholar
  38. 38.
    Karlsen A, Retterstol L, Laake P, et al. Anthocyanins inhibit nuclear factor-kappaB activation in monocytes and reduce plasma concentrations of pro-inflammatory mediators in healthy adults. J Nutr. 2007;137(8):1951–4.PubMedGoogle Scholar
  39. 39.
    Ruel G, Pomerleau S, Couture P, et al. Low-calorie cranberry juice supplementation reduces plasma oxidized LDL and cell adhesion molecule concentrations in men. Br J Nutr. 2008;99(2):352–9. doi: 10.1017/S0007114507811986.PubMedCrossRefGoogle Scholar
  40. 40.
    • Basu A, Fu DX, Wilkinson M, et al. Strawberries decrease atherosclerotic markers in subjects with metabolic syndrome. Nutr Res. 2010;30(7):462–9. doi: 10.1016/j.nutres.2010.06.016. The article discusses several aspects of metabolic syndrome, and provides important findings that support the benefits of strawberries in improving metabolic syndrome.PubMedCrossRefGoogle Scholar
  41. 41.
    Lee IT, Chan YC, Lin CW, et al. Effect of cranberry extracts on lipid profiles in subjects with type 2 diabetes. Diabet Med. 2008;25(12):1473–7. doi: 10.1111/j.1464-5491.2008.02588.x.PubMedCrossRefGoogle Scholar
  42. 42.
    Larson AJ, Symons JD, Jalili T. Therapeutic potential of quercetin to decrease blood pressure: Review of efficacy and mechanisms. Adv Nutr. 2012;3(1):39–46. doi: 10.3945/an.111.001271.PubMedCrossRefGoogle Scholar
  43. 43.
    Edwards RL, Lyon T, Litwin SE, et al. Quercetin reduces blood pressure in hypertensive subjects. J Nutr. 2007;137(11):2405–11.PubMedGoogle Scholar
  44. 44.
    Egert S, Bosy-Westphal A, Seiberl J, et al. Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: A double-blinded, placebo-controlled cross-over study. Br J Nutr. 2009;102(7):1065–74. doi: 10.1017/S0007114509359127.PubMedCrossRefGoogle Scholar
  45. 45.
    Loke WM, Hodgson JM, Proudfoot JM, et al. Pure dietary flavonoids quercetin and (−)-epicatechin augment nitric oxide products and reduce endothelin-1 acutely in healthy men. Am J Clin Nutr. 2008;88(4):1018–25.PubMedGoogle Scholar
  46. 46.
    Al-Solaiman Y, Jesri A, Mountford W, et al. DASH lowers blood pressure in obese hypertensives beyond potassium, magnesium and fibre. J Hum Hypertens. 2010;24(4):237–46.PubMedCrossRefGoogle Scholar
  47. 47.
    Long KZ, Santos JI, Rosado JL, et al. Vitamin A supplementation modifies the association between mucosal innate and adaptive immune responses and resolution of enteric pathogen infections. Am J Clin Nutr. 2011;93(3):578–85. doi: 10.3945/ajcn.110.003913.PubMedCrossRefGoogle Scholar
  48. 48.
    Latsios G, Tousoulis D, Androulakis E, et al. MicroRNAs in the diagnosis and treatment of unstable angina. Cur Top Med Chem. 2013;13(13):1596–604.CrossRefGoogle Scholar
  49. 49.
    Tousoulis D, Androulakis E, Papageorgiou N, et al. Novel biomarkers assessing endothelial dysfunction: role of miRNAs. Curr Top Med Chem. 2013;13(13):1518–26.PubMedCrossRefGoogle Scholar
  50. 50.
    Siasos G, Chrysohoou C, Tousoulis D, et al. The impact of physical activity on endothelial function in middle-aged and elderly subjects: The Ikaria study. Hell J Cardiol. 2013;54(2):94–101.Google Scholar
  51. 51.
    Tousoulis D, Siasos G, Zaromitidou M, et al. The impact of CYP2C19 genotype on cardiovascular events and platelet reactivity in patients with coronary artery disease receiving clopidogrel. Int J Cardiol. 2013. doi: 10.1016/j.ijcard.2013.01.040.Google Scholar
  52. 52.
    Baldrick FR, Woodside JV, Elborn JS, et al. Biomarkers of fruit and vegetable intake in human intervention studies: A systematic review. Crit Rev Food Sci Nutr. 2011;51(9):795–815. doi: 10.1080/10408398.2010.482217.PubMedCrossRefGoogle Scholar
  53. 53.
    Erlund I, Silaste ML, Alfthan G, et al. Plasma concentrations of the flavonoids hesperetin, naringenin and quercetin in human subjects following their habitual diets, and diets high or low in fruit and vegetables. Eur J Clin Nutr. 2002;56(9):891–8. doi: 10.1038/sj.ejcn.1601409.PubMedCrossRefGoogle Scholar
  54. 54.
    Beecher GR. Overview of dietary flavonoids: Nomenclature, occurrence and intake. J Nutr. 2003;133(10):3248S–54S.PubMedGoogle Scholar
  55. 55.
    Hooper L, Kroon PA, Rimm EB, et al. Flavonoids, flavonoid-rich foods, and cardiovascular risk: A meta-analysis of randomized controlled trials. Am J Clin Nutr. 2008;88(1):38–50.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • J. Y. Toh
    • 1
  • Verena M. H. Tan
    • 2
  • Paul C. Y. Lim
    • 3
  • S. T. Lim
    • 3
  • Mary F. F. Chong
    • 1
    • 2
    Email author
  1. 1.Singapore Institute for Clinical SciencesSingaporeSingapore
  2. 2.Clinical Nutrition Research CentreSingapore Institute for Clinical SciencesSingaporeSingapore
  3. 3.Department of CardiologyNational Heart Centre SingaporeSingaporeSingapore

Personalised recommendations