New Insights into Modulation of Thrombin Formation

  • Henri M.H. Spronk
  • Julian I. Borissoff
  • Hugo ten Cate
Clinical Trials and Their Interpretations (J Plutzky, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Clinical Trials and Their Interpretations


Thrombin is a pleiotropic enzyme that regulates hemostasis and nonhemostatic functions, including an array of actions within and on the vasculature. Physiologically, thrombin generation serves mainly to protect against thrombosis, but also to maintain vascular endothelial integrity. This protective effect is mediated in part through generation of anticoagulant enzymes, including activated protein C, formed on the action of thrombin on the endothelial receptor thrombomodulin. Partly, thrombin’s vascular effects are effectuated through interaction with protease-activated receptors on various cell types. Pathophysiologically, downregulation and shedding of anticoagulant-acting receptors such as thrombomodulin and endothelial protein C receptor may contribute to a shift in activities of thrombin towards thrombogenic and proinflammatory actions. This shift may typically occur in the process of atherosclerosis, leading to a proatherogenic direction of the effects of thrombin. Therapeutically, the long-term inhibition of thrombin may create new ways of reducing atherosclerosis burden, altering the plaque phenotype.


Thrombin Coagulation Activated protein C Atherosclerosis Thrombosis Atherothrombosis Anticoagulant Dabigatran Vitamin K antagonist 


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Borissoff JI, Spronk HMH, ten Cate H. The hemostatic system as a modulator of atherosclerosis. N Engl J Med. 2011;364(18):1746–60.PubMedCrossRefGoogle Scholar
  2. 2.
    • Versteeg HH, Heemskerk JWM, Levi M, Reitsma PH. New fundamentals in hemostasis. Physiol Rev. 2013;93(1):327–58. This review provides an excellent and detailed description of the mechanisms involved in coagulation and platelet function.PubMedCrossRefGoogle Scholar
  3. 3.
    Davì G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med. 2007 Dec 13;357(24):2482–94.Google Scholar
  4. 4.
    Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med. 2008;359(9):938–49.PubMedCrossRefGoogle Scholar
  5. 5.
    Mackman N, Tilley RE, Key NS. Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis. Arterioscler Thromb Vasc Biol. 2007;27(8):1687–93.PubMedCrossRefGoogle Scholar
  6. 6.
    Gailani D, Renné T. Intrinsic pathway of coagulation and arterial thrombosis. Arterioscler Thromb Vasc Biol. 2007;27(12):2507–13.PubMedCrossRefGoogle Scholar
  7. 7.
    Crawley JTB, Zanardelli S, Chion CKNK, Lane DA. The central role of thrombin in hemostasis. J Thromb Haemost. 2007;5 Suppl 1:95–101.PubMedCrossRefGoogle Scholar
  8. 8.
    Lane DA, Philippou H, Huntington JA. Directing thrombin. Blood. 2005;106(8):2605–12.PubMedCrossRefGoogle Scholar
  9. 9.
    Emsley J, McEwan PA, Gailani D. Structure and function of factor XI. Blood. 2010;115(13):2569–77.PubMedCrossRefGoogle Scholar
  10. 10.
    Renné T, Pozgajová M, Grüner S, Schuh K, Pauer H-U, Burfeind P, et al. Defective thrombus formation in mice lacking coagulation factor XII. J Exp Med. 2005;202(2):271–81.PubMedCrossRefGoogle Scholar
  11. 11.
    Kahn ML, Nakanishi-Matsui M, Shapiro MJ, Ishihara H, Coughlin SR. Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J Clin Invest. 1999;103(6):879–87.PubMedCrossRefGoogle Scholar
  12. 12.
    Esmon CT. Protein C, anticoagulant system—anti-inflammatory effects. Semin Immunopathol. 2012;34(1):127–32.PubMedCrossRefGoogle Scholar
  13. 13.
    Esmon CT. The protein C pathway. Chest. 2003;124(3 Suppl):26S–32S.PubMedCrossRefGoogle Scholar
  14. 14.
    Hackeng TM, Maurissen LFA, Castoldi E, Rosing J. Regulation of TFPI function by protein S. J Thromb Haemost. 2009;7 Suppl 1:165–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Kubier A, O'Brien M. Endogenous anticoagulants. Top Companion Anim Med. 2012;27(2):81–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Nesheim M. Thrombin and fibrinolysis. Chest. 2003;124(3 Suppl):33S–9S.PubMedCrossRefGoogle Scholar
  17. 17.
    Colucci M, Semeraro N. Thrombin activatable fibrinolysis inhibitor: at the nexus of fibrinolysis and inflammation. Thromb Res. 2012;129(3):314–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Bauer V, Sotníková R. Nitric oxide – the endothelium-derived relaxing factor and its role in endothelial functions. Gen Physiol Biophys. 2010;29(4):319–40.PubMedCrossRefGoogle Scholar
  19. 19.
    ten Cate H, Bauer KA, Levi M, Edgington TS, Sublett RD, Barzegar S, et al. The activation of factor X and prothrombin by recombinant factor VIIa in vivo is mediated by tissue factor. J Clin Invest. 1993;92(3):1207–12.PubMedCrossRefGoogle Scholar
  20. 20.
    Giesen PL, Rauch U, Bohrmann B, Kling D, Roqué M, Fallon JT, et al. Blood-borne tissue factor: another view of thrombosis. Proc Natl Acad Sci U S A. 1999;96(5):2311–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Reitsma PH, Versteeg HH, Middeldorp S. Mechanistic view of risk factors for venous thromboembolism. Arterioscler Thromb Vasc Biol. 2012;32(3):563–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47(8 Suppl):C13–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Loeffen R, Spronk HMH, ten Cate H. The impact of blood coagulability on atherosclerosis and cardiovascular disease. J Thromb Haemost. 2012;10(7):1207–16.PubMedCrossRefGoogle Scholar
  24. 24.
    Ye Z, Liu EHC, Higgins JPT, Keavney BD, Lowe GDO, Collins R, et al. Seven haemostatic gene polymorphisms in coronary disease: meta-analysis of 66,155 cases and 91,307 controls. Lancet. 2006;367(9511):651–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Laszik ZG, Zhou XJ, Ferrell GL, Silva FG, Esmon CT. Down-regulation of endothelial expression of endothelial cell protein C receptor and thrombomodulin in coronary atherosclerosis. Am J Pathol. 2001;159(3):797–802.PubMedCrossRefGoogle Scholar
  26. 26.
    Lip GYH, Tse HF, Lane DA. Atrial fibrillation. Lancet. 2012;379(9816):648–61.PubMedCrossRefGoogle Scholar
  27. 27.
    Levi M, ten Cate H. Disseminated intravascular coagulation. N Engl J Med. 1999;341(8):586–92.PubMedCrossRefGoogle Scholar
  28. 28.
    Osaki T, Kawabata S. Structure and function of coagulogen, a clottable protein in horseshoe crabs. Cell Mol Life Sci. 2004;61(11):1257–65.PubMedCrossRefGoogle Scholar
  29. 29.
    Levi M, Schultz M, van der Poll T. Disseminated intravascular coagulation in infectious disease. Semin Thromb Hemost. 2010;36(04):367–77.PubMedCrossRefGoogle Scholar
  30. 30.
    Levi M, Keller TT, van Gorp E, ten Cate H. Infection and inflammation and the coagulation system. Cardiovasc Res. 2003;60(1):26–39.PubMedCrossRefGoogle Scholar
  31. 31.
    Conway EM. Thrombomodulin and its role in inflammation. Semin Immunopathol. 2012;34(1):107–25.PubMedCrossRefGoogle Scholar
  32. 32.
    Ten Cate H, Schoenmakers SH, Franco R, Timmerman JJ, Groot AP, Spek CA, et al. Microvascular coagulopathy and disseminated intravascular coagulation. Crit Care Med. 2001;29(7 Suppl):S95–7. discussion S97–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Ishii H, Kizaki K, Horie S, Kazama M. Oxidized low density lipoprotein reduces thrombomodulin transcription in cultured human endothelial cells through degradation of the lipoprotein in lysosomes. J Biol Chem. 1996;271(14):8458–65.PubMedCrossRefGoogle Scholar
  34. 34.
    Ishii H, Tezuka T, Ishikawa H, Takada K, Oida K, Horie S. Oxidized phospholipids in oxidized low-density lipoprotein down-regulate thrombomodulin transcription in vascular endothelial cells through a decrease in the binding of RARbeta-RXRalpha heterodimers and Sp1 and Sp3 to their binding sequences in the TM promoter. Blood. 2003;101(12):4765–74.PubMedCrossRefGoogle Scholar
  35. 35.
    Glaser CB, Morser J, Clarke JH, Blasko E, McLean K, Kuhn I, et al. Oxidation of a specific methionine in thrombomodulin by activated neutrophil products blocks cofactor activity. A potential rapid mechanism for modulation of coagulation. J Clin Invest. 1992;90(6):2565–73.PubMedCrossRefGoogle Scholar
  36. 36.
    Faust SN, Levin M, Harrison OB, Goldin RD, Lockhart MS, Kondaveeti S, et al. Dysfunction of endothelial protein C activation in severe meningococcal sepsis. N Engl J Med. 2001;345(6):408–16.PubMedCrossRefGoogle Scholar
  37. 37.
    Lentz SR, Miller FJ, Piegors DJ, Erger RA, Fernández JA, Griffin JH, et al. Anticoagulant responses to thrombin are enhanced during regression of atherosclerosis in monkeys. Circulation. 2002;106(7):842–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Rezaie AR. The occupancy of endothelial protein C receptor by its ligand modulates the PAR-1 dependent signaling specificity of coagulation proteases. IUBMB Life. 2011;63(6):390–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Weiler H. Multiple receptor-mediated functions of activated protein C. Hamostaseologie. 2011;31(3):185–95.PubMedCrossRefGoogle Scholar
  40. 40.
    Schuepbach RA, Feistritzer C, Brass LF, Riewald M. Activated protein C-cleaved protease activated receptor-1 is retained on the endothelial cell surface even in the presence of thrombin. Blood. 2008;111(5):2667–73.PubMedCrossRefGoogle Scholar
  41. 41.
    Grimsey N, Soto AG, Trejo J. Regulation of protease-activated receptor signaling by post-translational modifications. IUBMB Life. 2011;63(6):403–11.PubMedCrossRefGoogle Scholar
  42. 42.
    Martí-Carvajal AJ, Solà I, Lathyris D, Cardona AF. Human recombinant activated protein C for severe sepsis. Cochrane Database Syst Rev. 2012;3, CD004388.PubMedGoogle Scholar
  43. 43.
    Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol. 2013;13(1):34–45.PubMedCrossRefGoogle Scholar
  44. 44.
    Zitvogel L, Kepp O, Kroemer G. Decoding cell death signals in inflammation and immunity. Cell. 2010;140(6):798–804.PubMedCrossRefGoogle Scholar
  45. 45.
    Borissoff JI, ten Cate H. From neutrophil extracellular traps release to thrombosis: an overshooting host-defense mechanism? J Thromb Haemost. 2011;9(9):1791–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Swirski FK, Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science. 2013;339(6116):161–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Webster SJ, Daigneault M, Bewley MA, Preston JA, Marriott HM, Walmsley SR, et al. Distinct cell death programs in monocytes regulate innate responses following challenge with common causes of invasive bacterial disease. J Immunol. 2010;185(5):2968–79.PubMedCrossRefGoogle Scholar
  49. 49.
    • Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. 2010;107(36):15880–5. In a comprehensive series of experiments, this study demonstrates that flushing blood over NETs causes adhesion, activation, and aggregation of platelets, as well as the presence of extracellular DNA traps in thrombi after deep vein thrombosis. The study shows that extracellular DNA traps are a unique link between inflammation and thrombosis.PubMedCrossRefGoogle Scholar
  50. 50.
    Brill A, Fuchs TA, Savchenko AS, Thomas GM, Martinod K, De Meyer SF, et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost. 2012;10(1):136–44.PubMedCrossRefGoogle Scholar
  51. 51.
    von Brühl M-L, Stark K, Steinhart A, Chandraratne S, Konrad I, Lorenz M, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819–35.CrossRefGoogle Scholar
  52. 52.
    van Montfoort ML, Stephan F, Lauw MN, Hutten BA, Van Mierlo GJ, Solati S, et al. Circulating nucleosomes and neutrophil activation as risk factors for deep vein thrombosis. Arterioscler Thromb Vasc Biol. 2013;33(1):147–51.PubMedCrossRefGoogle Scholar
  53. 53.
    Oehmcke S, Mörgelin M, Herwald H. Activation of the human contact system on neutrophil extracellular traps. J Innate Immun. 2009;1(3):225–30.PubMedCrossRefGoogle Scholar
  54. 54.
    • Massberg S, Grahl L, von M-L B, Manukyan D, Pfeiler S, Goosmann C, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010;16(8):887–96. This article describes the promotion of coagulation by the neutrophil-derived serine proteases neutrophil elastase and cathepsin G through enhancement of TF and factor XII activation as well as by proteolysis of the natural anticoagulant TF pathway inhibitor. The results from extensive experiments suggest a physiological role for thrombosis in innate antimicrobial defense.PubMedCrossRefGoogle Scholar
  55. 55.
    Semeraro F, Ammollo CT, Morrissey JH, Dale GL, Friese P, Esmon NL, et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 2011;118(7):1952–61.PubMedCrossRefGoogle Scholar
  56. 56.
    Ammollo CT, Semeraro F, Xu J, Esmon NL, Esmon CT. Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J Thromb Haemost. 2011;9(9):1795–803.PubMedCrossRefGoogle Scholar
  57. 57.
    Fischer S, Preissner KT. Extracellular nucleic acids as novel alarm signals in the vascular system. Mediators of defence and disease. Hamostaseologie. 2013;33(1):37–42.PubMedCrossRefGoogle Scholar
  58. 58.
    Kannemeier C, Shibamiya A, Nakazawa F, Trusheim H, Ruppert C, Markart P, et al. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci U S A. 2007;104(15):6388–93.PubMedCrossRefGoogle Scholar
  59. 59.
    Nakazawa F, Kannemeier C, Shibamiya A, Song Y, Tzima E, Schubert U, et al. Extracellular RNA is a natural cofactor for the (auto-)activation of factor VII-activating protease (FSAP). Biochem J. 2005;385(Pt 3):831–8.PubMedGoogle Scholar
  60. 60.
    De Meyer SF, Suidan GL, Fuchs TA, Monestier M, Wagner DD. Extracellular chromatin is an important mediator of ischemic stroke in mice. Arterioscler Thromb Vasc Biol. 2012;32(8):1884–91.PubMedCrossRefGoogle Scholar
  61. 61.
    Jain S, Pitoc GA, Holl EK, Zhang Y, Borst L, Leong KW, et al. Nucleic acid scavengers inhibit thrombosis without increasing bleeding. Proc Natl Acad Sci U S A. 2012;109(32):12938–43.PubMedCrossRefGoogle Scholar
  62. 62.
    Ikari Y, Yee KO, Hatsukami TS, Schwartz SM. Human carotid artery smooth muscle cells rarely express avb3 integrin at sites of recent plaque rupture. Thromb Haemost. 2000;84(2):338–44.PubMedGoogle Scholar
  63. 63.
    Wilcox JN, Smith KM, Schwartz SM, Gordon D. Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci U S A. 1989;86(8):2839–43.PubMedCrossRefGoogle Scholar
  64. 64.
    Borissoff JI, Heeneman S, Kilinc E, Kassák P, van Oerle R, Winckers K, et al. Early atherosclerosis exhibits an enhanced procoagulant state. Circulation. 2010;122(8):821–30.PubMedCrossRefGoogle Scholar
  65. 65.
    Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med. 1999;340(2):115–26.PubMedCrossRefGoogle Scholar
  66. 66.
    Libby P. Inflammation in atherosclerosis. Nature. 2002;420(6917):868–74.PubMedCrossRefGoogle Scholar
  67. 67.
    Borissoff JI, Spronk HMH, Heeneman S, ten Cate H. Is thrombin a key player in the “coagulation-atherogenesis” maze? Cardiovasc Res. 2009;82(3):392–403.PubMedCrossRefGoogle Scholar
  68. 68.
    Seehaus S, Shahzad K, Kashif M, Vinnikov IA, Schiller M, Wang H, et al. Hypercoagulability inhibits monocyte transendothelial migration through protease-activated receptor-1-, phospholipase-Cb-, phosphoinositide 3-kinase-, and nitric oxide-dependent signaling in monocytes and promotes plaque stability. Circulation. 2009;120(9):774–84.PubMedCrossRefGoogle Scholar
  69. 69.
    Castellino FJ, Ganopolsky JG, Noria F, Sandoval-Cooper MJ, Ploplis VA. Focal arterial inflammation is augmented in mice with a deficiency of the protein C gene. Thromb Haemost. 2006;96(6):794–801.PubMedGoogle Scholar
  70. 70.
    Westrick RJ, Bodary PF, Xu Z, Shen YC, Broze GJ, Eitzman DT. Deficiency of tissue factor pathway inhibitor promotes atherosclerosis and thrombosis in mice. Circulation. 2001;103(25):3044–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Vicente CP, He L, Tollefsen DM. Accelerated atherogenesis and neointima formation in heparin cofactor II deficient mice. Blood. 2007;110(13):4261–7.PubMedCrossRefGoogle Scholar
  72. 72.
    • Borissoff JI, Otten JJT, Heeneman S, Leenders P, van Oerle R, Soehnlein O, et al. Genetic and pharmacological modifications of thrombin formation in apolipoprotein E-deficient mice determine atherosclerosis severity and atherothrombosis onset in a neutrophil-dependent manner. PLoS ONE. 2013;8(2):e55784. With use of atherosclerotic mice on a procoagulant background, the contribution of enhanced thrombin formation to the development and progression of atherosclerosis is shown in this article. Pharmacologically inhibited thrombin generation attenuates plaque progression, suggesting a potential target for treatment of atherosclerosis through anticoagulation.PubMedCrossRefGoogle Scholar
  73. 73.
    Kadoglou NPE, Moustardas P, Katsimpoulas M, Kapelouzou A, Kostomitsopoulos N, Schafer K, et al. The beneficial effects of a direct thrombin inhibitor, dabigatran etexilate, on the development and stability of atherosclerotic lesions in apolipoprotein E-deficient mice. Cardiovasc Drugs Ther. 2012;26(5):367–74.PubMedCrossRefGoogle Scholar
  74. 74.
    Lee I-O, Kratz MT, Schirmer SH, Baumhäkel M, Böhm M. The effects of direct thrombin inhibition with dabigatran on plaque formation and endothelial function in apolipoprotein E-deficient mice. J Pharmacol Exp Ther. 2012;343(2):253–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Girolami A, Sambado L, Lombardi AM. The impact of blood coagulability on atherosclerosis and cardiovascular disease: a rebuttal. J Thromb Haemost. 2013;11(1):213–4. discussion 215–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Khallou-Laschet J, Caligiuri G, Tupin E, Gaston A-T, Poirier B, Groyer E, et al. Role of the intrinsic coagulation pathway in atherogenesis assessed in hemophilic apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol. 2005;25(8):e123–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Fabri DR, de Paula EV, Costa DSP, Annichino-Bizzacchi JM, Arruda VR. Novel insights into the development of atherosclerosis in hemophilia A mouse models. J Thromb Haemost. 2011;9(8):1556–61.PubMedCrossRefGoogle Scholar
  78. 78.
    Borissoff JI, Joosen IA, Versteylen MO, Spronk HM, ten Cate H, Hofstra L. Accelerated in vivo thrombin formation independently predicts the presence and severity of CT angiographic coronary atherosclerosis. JACC Cardiovasc Imaging. 2012;5(12):1201–10.PubMedCrossRefGoogle Scholar
  79. 79.
    Borissoff JI, Joosen IA, Versteylen MO, Brill A, Fuchs TA, Savchenko AS, et al. Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler Thromb Vasc Biol. 2013;33(8):2032–40.Google Scholar
  80. 80.
    Matsumoto K, Yano Y, Gabazza EC, Araki R, Bruno NE, Suematsu M, et al. Inverse correlation between activated protein C generation and carotid atherosclerosis in type 2 diabetic patients. Diabet Med. 2007;24(12):1322–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Zorio E, Navarro S, Medina P, Estellés A, Osa A, Rueda J, et al. Circulating activated protein C is reduced in young survivors of myocardial infarction and inversely correlates with the severity of coronary lesions. J Thromb Haemost. 2006;4(7):1530–6.PubMedCrossRefGoogle Scholar
  82. 82.
    Blomstrand D, Kölbel T, Lindblad B, Gottsäter A. Activated protein C-protein C inhibitor complex in peripheral arterial disease. Ann Vasc Surg. 2010;24(5):588–95.PubMedCrossRefGoogle Scholar
  83. 83.
    Zarrouk M, Keshavarz K, Lindblad B, Gottsäter A. APC-PCI complex levels for screening of AAA in patients with peripheral atherosclerosis. J Thromb Thrombolysis. 2013. doi:10.1007/s11239-013-0871-6.PubMedGoogle Scholar
  84. 84.
    Kölbel T, Strandberg K, Donath T, Mattiasson I, Stenflo J, Lindblad B. Activated protein C-protein C inhibitor complex in patients with abdominal aortic aneurysms: is it associated with diameter and growth rate? Vasc Endovascular Surg. 2008;42(2):135–40.PubMedCrossRefGoogle Scholar
  85. 85.
    Rennenberg RJMW, van Varik BJ, Schurgers LJ, Hamulyák K, ten Cate H, Leiner T, et al. Chronic coumarin treatment is associated with increased extracoronary arterial calcification in humans. Blood. 2010;115(24):5121–3.PubMedCrossRefGoogle Scholar
  86. 86.
    Weijs B, Blaauw Y, Rennenberg RJMW, Schurgers LJ, Timmermans CCMM, Pison L, et al. Patients using vitamin K antagonists show increased levels of coronary calcification: an observational study in low-risk atrial fibrillation patients. Eur Heart J. 2011;32(20):2555–62.PubMedCrossRefGoogle Scholar
  87. 87.
    Bea F, Kreuzer J, Preusch M, Schaab S, Isermann B, Rosenfeld ME, et al. Melagatran reduces advanced atherosclerotic lesion size and may promote plaque stability in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2006;26(12):2787–92.PubMedCrossRefGoogle Scholar
  88. 88.
    Zhou Q, Bea F, Preusch M, Wang H, Isermann B, Shahzad K, et al. Evaluation of plaque stability of advanced atherosclerotic lesions in apo E-deficient mice after treatment with the oral factor Xa inhibitor rivaroxaban. Mediators Inflamm. 2011;2011:432080.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Henri M.H. Spronk
    • 1
  • Julian I. Borissoff
    • 2
    • 3
  • Hugo ten Cate
    • 1
  1. 1.Laboratory for Clinical Thrombosis and Haemostasis, Department of Internal Medicine, Cardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands
  2. 2.Program in Cellular and Molecular MedicineBoston Children’s Hospital, Harvard Medical SchoolBostonUSA
  3. 3.Immune Disease InstituteChildren’s Hospital Boston, Harvard Medical SchoolBostonUSA

Personalised recommendations