Atherosclerosis and Transit of HDL Through the Lymphatic Vasculature

Clinical Trials and Their Interpretations (J Plutzky, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Clinical Trials and Their Interpretations


Key components of atherosclerotic plaque known to drive disease progression are macrophages and cholesterol. It has been widely understood, and bolstered by recent evidence, that the efflux of cholesterol from macrophage foam cells quells disease progression or even to promote regression. Following macrophage cholesterol efflux, cholesterol loaded onto HDL must be removed from the plaque environment. Here, we focus on recent evidence that the lymphatic vasculature is critical for the removal of cholesterol, likely as a component of HDL, from tissues including skin and the artery wall. We discuss the possibility that progression of atherosclerosis might in part be linked to sluggish removal of cholesterol from the plaque.


Inflammation Cardiovascular disease Reverse cholesterol transport Macrophage 


Conflict of Interest

Catherine Martel and Gwendalyn J. Randolph declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    • Estruch R, Ros E, Salas-Salvado J, Covas MI, Corella D, Aros F, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368(14):1279–90. Extremely effective impact of the Mediterranean diet in preventing cardiovascular disease in a very well-monitored study..PubMedCrossRefGoogle Scholar
  2. 2.
    Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357(21):2109–22.PubMedCrossRefGoogle Scholar
  3. 3.
    Boden WE, Probstfield JL, Anderson T, Chaitman BR, Desvignes-Nickens P, Koprowicz K, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365(24):2255–67.PubMedCrossRefGoogle Scholar
  4. 4.
    Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367(22):2089–99.PubMedCrossRefGoogle Scholar
  5. 5.
    Schwartz GG, Olsson AG, Ballantyne CM, Barter PJ, Holme IM, Kallend D, et al. Rationale and design of the dal-OUTCOMES trial: efficacy and safety of dalcetrapib in patients with recent acute coronary syndrome. Am Heart J. 2009;158(6):896–901.e893.PubMedCrossRefGoogle Scholar
  6. 6.
    Voight BF, Peloso GM, Orho-Melander M, Frikke-Schmidt R, Barbalic M, Jensen MK, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012;380(9841):572–80.PubMedCrossRefGoogle Scholar
  7. 7.
    Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. 2011;364(2):127–35.PubMedCrossRefGoogle Scholar
  8. 8.
    Alitalo K. The lymphatic vasculature in disease. Nat Med. 2011;17(11):1371–80.PubMedCrossRefGoogle Scholar
  9. 9.
    Chang SY, Song JH, Guleng B, Cotoner CA, Arihiro S, Zhao Y, et al. Circulatory antigen processing by mucosal dendritic cells controls CD8(+) T cell activation. Immunity. 2013;38(1):153–65.PubMedCrossRefGoogle Scholar
  10. 10.
    Bura KS, Lord C, Marshall S, McDaniel A, Thomas G, Warrier M, et al. Intestinal SR-BI does not impact cholesterol absorption or transintestinal cholesterol efflux in mice. J Lipid Res. 2013;54(6):1567–77.PubMedCrossRefGoogle Scholar
  11. 11.
    Taylor AJ, Villines TC, Stanek EJ. Paradoxical progression of atherosclerosis related to low-density lipoprotein reduction and exposure to ezetimibe. Eur Heart J. 2012;33(23):2939–45.PubMedCrossRefGoogle Scholar
  12. 12.
    Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63.PubMedCrossRefGoogle Scholar
  13. 13.
    • Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575–84. This paper is the first in a series by the Hazen laboratory that forges new links between cardiovascular disease and the intestinal microbial environment. The work illustrates how dietary components promote the generation of compounds produced by microbiota that amplify cardiovascular disease..PubMedCrossRefGoogle Scholar
  14. 14.
    Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85.PubMedCrossRefGoogle Scholar
  15. 15.
    Tall AR, Yvan-Charvet L, Terasaka N, Pagler T, Wang N. HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. Cell Metab. 2008;7(5):365–75.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhu X, Owen JS, Wilson MD, Li H, Griffiths GL, Thomas MJ, et al. Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol. J Lipid Res. 2010;51(11):3196–206.PubMedCrossRefGoogle Scholar
  17. 17.
    Jakubzick C, Bogunovic M, Bonito AJ, Kuan EL, Merad M, Randolph GJ. Lymph-migrating, tissue-derived dendritic cells are minor constituents within steady-state lymph nodes. J Exp Med. 2008;205(12):2839–50.PubMedCrossRefGoogle Scholar
  18. 18.
    • Westerterp M, Murphy AJ, Wang M, Pagler TA, Vengrenyuk Y, Kappus MS et al.: Deficiency of ABCA1 and ABCG1 in Macrophages Increases Inflammation and Accelerates Atherosclerosis in Mice. Circ Res 2013. The most specific evidence to date that macrophage loss of ABCA1 and ABCG1, rather than loss of these transporters in other cell types, drives atherogenesis. Google Scholar
  19. 19.
    Nanjee MN, Cooke CJ, Wong JS, Hamilton RL, Olszewski WL, Miller NE. Composition and ultrastructure of size subclasses of normal human peripheral lymph lipoproteins: quantification of cholesterol uptake by HDL in tissue fluids. J Lipid Res. 2001;42(4):639–48.PubMedGoogle Scholar
  20. 20.
    Nanjee MN, Cooke CJ, Olszewski WL, Miller NE. Lipid and apolipoprotein concentrations in prenodal leg lymph of fasted humans. Associations with plasma concentrations in normal subjects, lipoprotein lipase deficiency, and LCAT deficiency. J Lipid Res. 2000;41(8):1317–27.PubMedGoogle Scholar
  21. 21.
    Nanjee MN, Cooke CJ, Olszewski WL, Miller NE. Concentrations of electrophoretic and size subclasses of apolipoprotein A-I-containing particles in human peripheral lymph. Arterioscler Thromb Vasc Biol. 2000;20(9):2148–55.PubMedCrossRefGoogle Scholar
  22. 22.
    • Martel C, Li W, Fulp B, Platt AM, Gautier EL, Westerterp M, et al. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J Clin Invest. 2013;123(4):1571–9. Illustrates the quantitative importance of the lymphatic vasculature in macrophage reverse cholesterol transport, including its transport from the atherosclerosis-affected artery wall..PubMedCrossRefGoogle Scholar
  23. 23.
    Rohrer L, Cavelier C, Fuchs S, Schluter MA, Volker W, von Eckardstein A. Binding, internalization and transport of apolipoprotein A-I by vascular endothelial cells. Biochim Biophys Acta. 2006;1761(2):186–94.PubMedCrossRefGoogle Scholar
  24. 24.
    Cavelier C, Ohnsorg PM, Rohrer L, von Eckardstein A. The beta-chain of cell surface F(0)F(1) ATPase modulates apoA-I and HDL transcytosis through aortic endothelial cells. Arterioscler Thromb Vasc Biol. 2012;32(1):131–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Kim WS, Tarbell JM. Macromolecular transport through the deformable porous media of an artery wall. J Biomech Eng. 1994;116(2):156–63.PubMedCrossRefGoogle Scholar
  26. 26.
    Meyer G, Merval R, Tedgui A. Effects of pressure-induced stretch and convection on low-density lipoprotein and albumin uptake in the rabbit aortic wall. Circ Res. 1996;79(3):532–40.PubMedCrossRefGoogle Scholar
  27. 27.
    Baldwin AL, Wilson LM, Gradus-Pizlo I, Wilensky R, March K. Effect of atherosclerosis on transmural convection an arterial ultrastructure. Implications for local intravascular drug delivery. Arterioscler Thromb Vasc Biol. 1997;17(12):3365–75.PubMedCrossRefGoogle Scholar
  28. 28.
    • Lim HY, Thiam CH, Yeo KP, Bisoendial R, Hii CS, McGrath KC, et al. Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by SR-BI-mediated transport of HDL. Cell Metab. 2013;17(5):671–84. Provides evidence that cholesterol trafficking through the lymphatic vasculature in skin depends on SR-B1..PubMedCrossRefGoogle Scholar
  29. 29.
    Kholova I, Dragneva G, Cermakova P, Laidinen S, Kaskenpaa N, Hazes T, et al. Lymphatic vasculature is increased in heart valves, ischaemic and inflamed hearts and in cholesterol-rich and calcified atherosclerotic lesions. Eur J Clin Invest. 2011;41(5):487–97.PubMedCrossRefGoogle Scholar
  30. 30.
    Drozdz K, Janczak D, Dziegiel P, Podhorska M, Piotrowska A, Patrzalek D, et al. Adventitial lymphatics and atherosclerosis. Lymphology. 2012;45(1):26–33.PubMedGoogle Scholar
  31. 31.
    Hatakeyama K, Kaneko MK, Kato Y, Ishikawa T, Nishihira K, Tsujimoto Y, et al. Podoplanin expression in advanced atherosclerotic lesions of human aortas. Thromb Res. 2012;129(4):e70–76.PubMedCrossRefGoogle Scholar
  32. 32.
    Syvaranta S, Helske S, Lappalainen J, Kupari M, Kovanen PT. Lymphangiogenesis in aortic valve stenosis–novel regulatory roles for valvular myofibroblasts and mast cells. Atherosclerosis. 2012;221(2):366–74.PubMedCrossRefGoogle Scholar
  33. 33.
    Mohler 3rd ER, Gannon F, Reynolds C, Zimmerman R, Keane MG, Kaplan FS. Bone formation and inflammation in cardiac valves. Circulation. 2001;103(11):1522–8.PubMedCrossRefGoogle Scholar
  34. 34.
    O’Brien KD, Kuusisto J, Reichenbach DD, Ferguson M, Giachelli C, Alpers CE, et al. Osteopontin is expressed in human aortic valvular lesions. Circulation. 1995;92(8):2163–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Kaden JJ, Bickelhaupt S, Grobholz R, Haase KK, Sarikoc A, Kilic R, et al. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulate aortic valve calcification. J Mol Cell Cardiol. 2004;36(1):57–66.PubMedCrossRefGoogle Scholar
  36. 36.
    Otto CM, Kuusisto J, Reichenbach DD, Gown AM, O’Brien KD. Characterization of the early lesion of ‘degenerative’ valvular aortic stenosis. Histological and immunohistochemical studies. Circulation. 1994;90(2):844–53.PubMedCrossRefGoogle Scholar
  37. 37.
    Olsson M, Dalsgaard CJ, Haegerstrand A, Rosenqvist M, Ryden L, Nilsson J. Accumulation of T lymphocytes and expression of interleukin-2 receptors in nonrheumatic stenotic aortic valves. J Am Coll Cardiol. 1994;23(5):1162–70.PubMedCrossRefGoogle Scholar
  38. 38.
    Eliska O, Eliskova M, Miller AJ. The absence of lymphatics in normal and atherosclerotic coronary arteries in man: a morphologic study. Lymphology. 2006;39(2):76–83.PubMedGoogle Scholar
  39. 39.
    Miller AJ, DeBoer A, Palmer A. The role of the lymphatic system in coronary atherosclerosis. Med Hypotheses. 1992;37(1):31–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Connelly JJ, Wang T, Cox JE, Haynes C, Wang L, Shah SH, et al. GATA2 is associated with familial early-onset coronary artery disease. PLoS genetics. 2006;2(8):e139.PubMedCrossRefGoogle Scholar
  41. 41.
    Hyde RK, Liu PP. GATA2 mutations lead to MDS and AML. Nat Genet. 2011;43(10):926–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Cederberg A, Gronning LM, Ahren B, Tasken K, Carlsson P, Enerback S. FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell. 2001;106(5):563–73.PubMedCrossRefGoogle Scholar
  43. 43.
    Petrova TV, Karpanen T, Norrmen C, Mellor R, Tamakoshi T, Finegold D, et al. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med. 2004;10(9):974–81.PubMedCrossRefGoogle Scholar
  44. 44.
    Horra A, Salazar J, Ferre R, Vallve JC, Guardiola M, Rosales R, et al. Prox-1 and FOXC2 gene expression in adipose tissue: A potential contributory role of the lymphatic system to familial combined hyperlipidaemia. Atherosclerosis. 2009;206(2):343–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Pajukanta P, Allayee H, Krass KL, Kuraishy A, Soro A, Lilja HE, et al. Combined analysis of genome scans of dutch and finnish families reveals a susceptibility locus for high-density lipoprotein cholesterol on chromosome 16q. Am J Hum Genet. 2003;72(4):903–17.PubMedCrossRefGoogle Scholar
  46. 46.
    Breslin JW, Gaudreault N, Watson KD, Reynoso R, Yuan SY, Wu MH. Vascular endothelial growth factor-C stimulates the lymphatic pump by a VEGF receptor-3-dependent mechanism. Am J Physiol Heart Circ Physiol. 2007;293(1):H709–718.PubMedCrossRefGoogle Scholar
  47. 47.
    Makinen T, Jussila L, Veikkola T, Karpanen T, Kettunen MI, Pulkkanen KJ, et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med. 2001;7(2):199–205.PubMedCrossRefGoogle Scholar
  48. 48.
    Guerzoni AR, Biselli PM, Godoy MF, Souza DR, Haddad R, Eberlin MN, et al. Homocysteine and MTHFR and VEGF gene polymorphisms: impact on coronary artery disease. Arq Bras Cardiol. 2009;92(4):263–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Schnabel R, Dupuis J, Larson MG, Lunetta KL, Robins SJ, Zhu Y, et al. Clinical and genetic factors associated with lipoprotein-associated phospholipase A2 in the Framingham Heart Study. Atherosclerosis. 2009;204(2):601–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Wada H, Ura S, Kitaoka S, Satoh-Asahara N, Horie T, Ono K, et al. Distinct characteristics of circulating vascular endothelial growth factor-a and C levels in human subjects. PLoS One. 2011;6(12):e29351.PubMedCrossRefGoogle Scholar
  51. 51.
    Rousselle A, Qadri F, Leukel L, Yilmaz R, Fontaine JF, Sihn G, et al. CXCL5 limits macrophage foam cell formation in atherosclerosis. J Clin Invest. 2013;123(3):1343–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Binder CJ, Horkko S, Dewan A, Chang MK, Kieu EP, Goodyear CS, et al. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat Med. 2003;9(6):736–43.PubMedCrossRefGoogle Scholar
  53. 53.
    Johnson NC, Dillard ME, Baluk P, McDonald DM, Harvey NL, Frase SL, et al. Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity. Genes Dev. 2008;22(23):3282–91.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUSA

Personalised recommendations