Current Atherosclerosis Reports

, Volume 14, Issue 5, pp 469–475 | Cite as

Endoplasmic Reticulum Stress in Cardiometabolic Disorders

  • Lale Ozcan
Clinical Trials and Their Interpretations (J Plutzky, Section Editor)


When endoplasmic reticulum (ER) homeostasis is disrupted, an adaptive signaling pathway, called the unfolded protein response (UPR) is activated to help ER cope with the stress. The UPR is an important signal transduction pathway, crucial for the survival and function of all cells. Recently, there has been a substantial progress made in understanding the molecular mechanisms of physiological UPR regulation and its role in the pathogenesis of many diseases including metabolic diseases. Studies using mouse models lacking or overexpressing the factors involved in ER stress signaling as well as work performed on humans have revealed the contribution of UPR to disease progression. This review focuses on the regulation of UPR signaling and its relevance in pathogenesis of metabolic diseases.


ER Stress UPR Obesity Diabetes Atherosclerosis NAFLD 



I gratefully thank my mentor Ira Tabas, M.D., Ph.D. for his guidance, creativity and support and all the past & present members of the Tabas Lab. Funding is from American Heart Association Scientist Development Grant (11SDG5300022).


No potential conflict of interest relevant to this article was reported.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Ogden CL, Carroll MD, Curtin LR, Lamb MM, Flegal KM. Prevalence of high body mass index in US children and adolescents, 2007–2008. JAMA: J Am Med Assoc. 2010;303(3):242–9. Epub 2010/01/15.CrossRefGoogle Scholar
  2. 2.
    Ozcan L, Tabas I. Role of endoplasmic reticulum stress in metabolic disease and other disorders. Ann Rev Med. 2012;63:317–28. Epub 2012/01/18.PubMedCrossRefGoogle Scholar
  3. 3.
    Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell. 2010;140(6):900–17. Epub 2010/03/23.PubMedCrossRefGoogle Scholar
  4. 4.
    Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334(6059):1081–6. Epub 2011/11/26.PubMedCrossRefGoogle Scholar
  5. 5.
    Hetz C, Martinon F, Rodriguez D, Glimcher LH. The unfolded protein response: integrating stress signals through the stress sensor IRE1alpha. Physiol Rev. 2011;91(4):1219–43. Epub 2011/10/21.PubMedCrossRefGoogle Scholar
  6. 6.
    Malhotra JD, Kaufman RJ. The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol. 2007;18(6):716–31. Epub 2007/11/21.PubMedCrossRefGoogle Scholar
  7. 7.
    Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8(7):519–29. Epub 2007/06/15.PubMedCrossRefGoogle Scholar
  8. 8.
    Rutkowski DT, Kaufman RJ. A trip to the ER: coping with stress. Trends Cell Biol. 2004;14(1):20–8. Epub 2004/01/20.PubMedCrossRefGoogle Scholar
  9. 9.
    McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol. 2001;21(4):1249–59. Epub 2001/02/07.PubMedCrossRefGoogle Scholar
  10. 10.
    Novoa I, Zeng H, Harding HP, Ron D. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J Cell Biol. 2001;153(5):1011–22. Epub 2001/05/31.PubMedCrossRefGoogle Scholar
  11. 11.
    Li G, Mongillo M, Chin KT, Harding H, Ron D, Marks AR, et al. Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. J Cell Biol. 2009;186(6):783–92. Epub 2009/09/16.PubMedCrossRefGoogle Scholar
  12. 12.
    Timmins JM, Ozcan L, Seimon TA, Li G, Malagelada C, Backs J, et al. Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways. J Clin Invest. 2009;119(10):2925–41. Epub 2009/09/11.PubMedCrossRefGoogle Scholar
  13. 13.
    Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol. 2003;23(20):7198–209. Epub 2003/10/01.PubMedCrossRefGoogle Scholar
  14. 14.
    Jiang HY, Wek SA, McGrath BC, Scheuner D, Kaufman RJ, Cavener DR, et al. Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses. Mol Cell Biol. 2003;23(16):5651–63. Epub 2003/08/05.PubMedCrossRefGoogle Scholar
  15. 15.
    Glimcher LH. XBP1: the last two decades. Ann Rheum Dis. 2010;69 Suppl 1:i67–71. Epub 2010/01/09.PubMedCrossRefGoogle Scholar
  16. 16.
    Hollien J, Weissman JS. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science. 2006;313(5783):104–7. Epub 2006/07/11.PubMedCrossRefGoogle Scholar
  17. 17.
    Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000;287(5453):664–6. Epub 2000/01/29.PubMedCrossRefGoogle Scholar
  18. 18.
    Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature. 2000;403(6765):98–103. Epub 2000/01/19.PubMedCrossRefGoogle Scholar
  19. 19.
    Chen X, Shen J, Prywes R. The luminal domain of ATF6 senses endoplasmic reticulum [ER] stress and causes translocation of ATF6 from the ER to the Golgi. J Biol Chem. 2002;277(15):13045–52. Epub 2002/02/01.PubMedCrossRefGoogle Scholar
  20. 20.
    Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011;145(3):341–55. Epub 2011/05/03.PubMedCrossRefGoogle Scholar
  21. 21.
    Tabas I. Pulling down the plug on atherosclerosis: finding the culprit in your heart. Nature Med. 2011;17(7):791–3. Epub 2011/07/09.PubMedCrossRefGoogle Scholar
  22. 22.
    Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol. 2010;10(1):36–46. Epub 2009/12/05.PubMedGoogle Scholar
  23. 23.
    •• Thorp E, Iwawaki T, Miura M, Tabas I. A reporter for tracking the UPR in vivo reveals patterns of temporal and cellular stress during atherosclerotic progression. J Lipid Res. 2011;52(5):1033–8. Epub 2011/03/02. This study describes the first in vivo reporter for ER stress during atherosclerosis. The authors show that the fluorescent XBP-1 ER stress indicator Erai signal which is mostly localized to macrophages, increase as a function of time on the atherogenic diet; providing a valuable tool to monitor activation of the UPR in atherosclerosis.PubMedCrossRefGoogle Scholar
  24. 24.
    • Thorp E, Li G, Seimon TA, Kuriakose G, Ron D, Tabas I. Reduced apoptosis and plaque necrosis in advanced atherosclerotic lesions of Apoe-/- and Ldlr-/- mice lacking CHOP. Cell Metab. 2009;9(5):474–81. Epub 2009/05/07. This article together with reference 25 shows that mice deficient in UPR effector, CHOP, have reduced plaque necrosis and lesional macrophage apoptosis demonstrating the importance of UPR in plaque progression. PubMedCrossRefGoogle Scholar
  25. 25.
    Tsukano H, Gotoh T, Endo M, Miyata K, Tazume H, Kadomatsu T, et al. The endoplasmic reticulum stress-C/EBP homologous protein pathway-mediated apoptosis in macrophages contributes to the instability of atherosclerotic plaques. Arterioscler Thromb Vasc Biol. 2010;30(10):1925–32. Epub 2010/07/24.PubMedCrossRefGoogle Scholar
  26. 26.
    Myoishi M, Hao H, Minamino T, Watanabe K, Nishihira K, Hatakeyama K, et al. Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation. 2007;116(11):1226–33. Epub 2007/08/22.PubMedCrossRefGoogle Scholar
  27. 27.
    Dickhout JG, Lhotak S, Hilditch BA, Basseri S, Colgan SM, Lynn EG, et al. Induction of the unfolded protein response after monocyte to macrophage differentiation augments cell survival in early atherosclerotic lesions. FASEB J: Off Publ Fed Am Soc Exp Biol. 2011;25(2):576–89. Epub 2010/10/23.Google Scholar
  28. 28.
    Yorimitsu T, Klionsky DJ. Autophagy: molecular machinery for self-eating. Cell Death Differ. 2005;12 Suppl 2:1542–52. Epub 2005/10/26.PubMedCrossRefGoogle Scholar
  29. 29.
    Liao X, Sluimer JC, Wang Y, Subramanian M, Brown K, Pattison JS, et al. Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab. 2012;15(4):545–53. Epub 2012/03/27.PubMedCrossRefGoogle Scholar
  30. 30.
    Civelek M, Manduchi E, Riley RJ, Stoeckert Jr CJ, Davies PF. Chronic endoplasmic reticulum stress activates unfolded protein response in arterial endothelium in regions of susceptibility to atherosclerosis. Circ Res. 2009;105(5):453–61. Epub 2009/08/08.PubMedCrossRefGoogle Scholar
  31. 31.
    Matsushita E, Asai N, Enomoto A, Kawamoto Y, Kato T, Mii S, et al. Protective role of Gipie, a Girdin family protein, in endoplasmic reticulum stress responses in endothelial cells. Mol Biol Cell. 2011;22(6):736–47. Epub 2011/02/04.PubMedCrossRefGoogle Scholar
  32. 32.
    Zeng L, Zampetaki A, Margariti A, Pepe AE, Alam S, Martin D, et al. Sustained activation of XBP1 splicing leads to endothelial apoptosis and atherosclerosis development in response to disturbed flow. Proc Natl Acad Sci U S A. 2009;106(20):8326–31. Epub 2009/05/07.PubMedCrossRefGoogle Scholar
  33. 33.
    Sanson M, Auge N, Vindis C, Muller C, Bando Y, Thiers JC, et al. Oxidized low-density lipoproteins trigger endoplasmic reticulum stress in vascular cells: prevention by oxygen-regulated protein 150 expression. Circ Res. 2009;104(3):328–36. Epub 2008/12/25.PubMedCrossRefGoogle Scholar
  34. 34.
    Gao J, Ishigaki Y, Yamada T, Kondo K, Yamaguchi S, Imai J, et al. Involvement of endoplasmic stress protein C/EBP homologous protein in arteriosclerosis acceleration with augmented biological stress responses. Circulation. 2011;124(7):830–9. Epub 2011/08/04.PubMedCrossRefGoogle Scholar
  35. 35.
    Tabas I. The role of endoplasmic reticulum stress in the progression of atherosclerosis. Circ Res. 2010;107(7):839–50. Epub 2010/10/05.PubMedCrossRefGoogle Scholar
  36. 36.
    Pedruzzi E, Guichard C, Ollivier V, Driss F, Fay M, Prunet C, et al. NAD[P]H oxidase Nox-4 mediates 7-ketocholesterol-induced endoplasmic reticulum stress and apoptosis in human aortic smooth muscle cells. Mol Cell Biol. 2004;24(24):10703–17. Epub 2004/12/02.PubMedCrossRefGoogle Scholar
  37. 37.
    Fu S, Yang L, Li P, Hofmann O, Dicker L, Hide W, et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature. 2011;473(7348):528–31. Epub 2011/05/03.PubMedCrossRefGoogle Scholar
  38. 38.
    Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 2004;306(5695):457–61. Epub 2004/10/16.PubMedCrossRefGoogle Scholar
  39. 39.
    Ozcan L, Ergin AS, Lu A, Chung J, Sarkar S, Nie D, et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 2009;9(1):35–51. Epub 2009/01/02.PubMedCrossRefGoogle Scholar
  40. 40.
    Boden G, Duan X, Homko C, Molina EJ, Song W, Perez O, et al. Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Diabetes. 2008;57(9):2438–44. Epub 2008/06/24.PubMedCrossRefGoogle Scholar
  41. 41.
    Gregor MF, Yang L, Fabbrini E, Mohammed BS, Eagon JC, Hotamisligil GS, et al. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes. 2009;58(3):693–700. Epub 2008/12/11.PubMedCrossRefGoogle Scholar
  42. 42.
    Boden G, Merali S. Measurement of the increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Methods Enzymol. 2011;489:67–82. Epub 2011/01/27.PubMedCrossRefGoogle Scholar
  43. 43.
    Kammoun HL, Chabanon H, Hainault I, Luquet S, Magnan C, Koike T, et al. GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J Clin Invest. 2009;119(5):1201–15. Epub 2009/04/14.PubMedCrossRefGoogle Scholar
  44. 44.
    Zhou Y, Lee J, Reno CM, Sun C, Park SW, Chung J, et al. Regulation of glucose homeostasis through a XBP-1-FoxO1 interaction. Nature Med. 2011;17(3):356–65. Epub 2011/02/15.PubMedCrossRefGoogle Scholar
  45. 45.
    Oyadomari S, Harding HP, Zhang Y, Oyadomari M, Ron D. Dephosphorylation of translation initiation factor 2alpha enhances glucose tolerance and attenuates hepatosteatosis in mice. Cell Metab. 2008;7(6):520–32. Epub 2008/06/05.PubMedCrossRefGoogle Scholar
  46. 46.
    Birkenfeld AL, Lee HY, Majumdar S, Jurczak MJ, Camporez JP, Jornayvaz FR, et al. Influence of the hepatic eukaryotic initiation factor 2alpha [eIF2alpha] endoplasmic reticulum [ER] stress response pathway on insulin-mediated ER stress and hepatic and peripheral glucose metabolism. J Biol Chem. 2011;286(42):36163–70. Epub 2011/08/13.PubMedCrossRefGoogle Scholar
  47. 47.
    Wang Y, Vera L, Fischer WH, Montminy M. The CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis. Nature. 2009;460(7254):534–7. Epub 2009/06/23.PubMedGoogle Scholar
  48. 48.
    Kimura K, Yamada T, Matsumoto M, Kido Y, Hosooka T, Asahara S, et al. Endoplasmic reticulum stress inhibits STAT3-dependent suppression of hepatic gluconeogenesis via dephosphorylation and deacetylation. Diabetes. 2012;61(1):61–73. Epub 2011/11/30.PubMedCrossRefGoogle Scholar
  49. 49.
    Delepine M, Nicolino M, Barrett T, Golamaully M, Lathrop GM, Julier C. EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Genet. 2000;25(4):406–9. Epub 2011/11/30.PubMedCrossRefGoogle Scholar
  50. 50.
    Lee AH, Heidtman K, Hotamisligil GS, Glimcher LH. Dual and opposing roles of the unfolded protein response regulated by IRE1alpha and XBP1 in proinsulin processing and insulin secretion. Proc Natl Acad Sci U S A. 2011;108(21):8885–90. Epub 2011/05/11.PubMedCrossRefGoogle Scholar
  51. 51.
    Laybutt DR, Preston AM, Akerfeldt MC, Kench JG, Busch AK, Biankin AV, et al. Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia. 2007;50(4):752–63. Epub 2007/02/03.PubMedCrossRefGoogle Scholar
  52. 52.
    Song B, Scheuner D, Ron D, Pennathur S, Kaufman RJ. Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes. J Clin Invest. 2008;118(10):3378–89. Epub 2008/09/09.PubMedCrossRefGoogle Scholar
  53. 53.
    Back SH, Scheuner D, Han J, Song B, Ribick M, Wang J, et al. Translation attenuation through eIF2alpha phosphorylation prevents oxidative stress and maintains the differentiated state in beta cells. Cell Metab. 2009;10(1):13–26. Epub 2009/07/09.PubMedCrossRefGoogle Scholar
  54. 54.
    Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell. 2012;148(5):852–71. Epub 2012/03/06.PubMedCrossRefGoogle Scholar
  55. 55.
    Lee AH, Scapa EF, Cohen DE, Glimcher LH. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science. 2008;320(5882):1492–6. Epub 2008/06/17.PubMedCrossRefGoogle Scholar
  56. 56.
    Rutkowski DT, Wu J, Back SH, Callaghan MU, Ferris SP, Iqbal J, et al. UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators. Dev Cell. 2008;15(6):829–40. Epub 2008/12/17.PubMedCrossRefGoogle Scholar
  57. 57.
    Ota T, Gayet C, Ginsberg HN. Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J Clin Invest. 2008;118(1):316–32. Epub 2007/12/07.PubMedCrossRefGoogle Scholar
  58. 58.
    Qiu W, Su Q, Rutledge AC, Zhang J, Adeli K. Glucosamine-induced endoplasmic reticulum stress attenuates apolipoprotein B100 synthesis via PERK signaling. J Lipid Res. 2009;50(9):1814–23. Epub 2009/04/23.PubMedCrossRefGoogle Scholar
  59. 59.
    Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006;313(5790):1137–40. Epub 2006/08/26.PubMedCrossRefGoogle Scholar
  60. 60.
    Erbay E, Babaev VR, Mayers JR, Makowski L, Charles KN, Snitow ME, et al. Reducing endoplasmic reticulum stress through a macrophage lipid chaperone alleviates atherosclerosis. Nature Med. 2009;15(12):1383–91. Epub 2009/12/08.PubMedCrossRefGoogle Scholar
  61. 61.
    Xiao C, Giacca A, Lewis GF. Sodium phenylbutyrate, a drug with known capacity to reduce endoplasmic reticulum stress, partially alleviates lipid-induced insulin resistance and beta-cell dysfunction in humans. Diabetes. 2011;60(3):918–24. Epub 2011/01/29.PubMedCrossRefGoogle Scholar
  62. 62.
    Kars M, Yang L, Gregor MF, Mohammed BS, Pietka TA, Finck BN, et al. Tauroursodeoxycholic Acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes. 2010;59(8):1899–905. Epub 2010/06/05.PubMedCrossRefGoogle Scholar
  63. 63.
    Breder I, Coope A, Arruda AP, Razolli D, Milanski M, Dorighello Gde G, et al. Reduction of endoplasmic reticulum stress–a novel mechanism of action of statins in the protection against atherosclerosis. Atherosclerosis. 2010;212(1):30–1. Epub 2010/06/12.PubMedCrossRefGoogle Scholar
  64. 64.
    Fernandez PM, Tabbara SO, Jacobs LK, Manning FC, Tsangaris TN, Schwartz AM, et al. Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions. Breast Cancer Res Treat. 2000;59(1):15–26. Epub 2000/04/07.PubMedCrossRefGoogle Scholar
  65. 65.
    Lee AS. GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res. 2007;67(8):3496–9. Epub 2007/04/19.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of MedicineColumbia UniversityNew YorkUSA

Personalised recommendations