Current Atherosclerosis Reports

, Volume 14, Issue 5, pp 394–401

Role of Tissue Factor in Atherothrombosis

Clinical Trials and Their Interpretations (J Plutzky, Section Editor)

Abstract

Atherothrombosis describes the acute thrombotic event that occurs after rupture of an atherosclerotic plaque. It often leads to arterial occlusion and subsequent clinical manifestations of myocardial infarction, stroke, and sudden death. Tissue factor (TF) is the receptor for plasma factor VIIa (FVIIa) and, once formed, the TF:FVIIa complex activates the coagulation cascade. TF is present at high levels within atherosclerotic lesions and is also present on circulating monocytes and microparticles in patients with advanced cardiovascular disease (CVD). Formation of the TF:FVIIa complex plays a central role in atherothrombosis. This review will describe the cellular sources of TF, the potential of TF-positive microparticles as a biomarker of thrombotic risk, and current pharmacologic approaches to inhibit TF as a therapeutic intervention in patients with CVD.

Keywords

Tissue factor Atherosclerosis Thrombosis Microparticles Coagulation Monocytes Statins 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Minino AM. Death in the United States, 2009. NCHS Data Brief. 2011;(64):1–8.Google Scholar
  2. 2.
    Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics–2011 update: a report from the American Heart Association. Circulation. 2011;123(4):e18–e209.PubMedCrossRefGoogle Scholar
  3. 3.
    Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation. 2012;125(1):e2–e220.PubMedCrossRefGoogle Scholar
  4. 4.
    Heidenreich PA, Trogdon JG, Khavjou OA, et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011;123(8):933–44.PubMedCrossRefGoogle Scholar
  5. 5.
    Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med. 1999;340(2):115–26.PubMedCrossRefGoogle Scholar
  6. 6.
    Demetz G, Ott I. The interface between inflammation and coagulation in cardiovascular disease. Int J Inflamm. 2012;2012:860301.Google Scholar
  7. 7.
    Bach RR. Initiation of coagulation by tissue factor. CRC Crit Rev Biochem. 1988;23(4):339–68.PubMedCrossRefGoogle Scholar
  8. 8.
    Edgington TS, Mackman N, Brand K, Ruf W. The structural biology of expression and function of tissue factor. Thromb Haemost. 1991;66(1):67–79.PubMedGoogle Scholar
  9. 9.
    Mackman N. Role of tissue factor in hemostasis, thrombosis, and vascular development. Arterioscler Thromb Vasc Biol. 2004;24(6):1015–22.PubMedCrossRefGoogle Scholar
  10. 10.
    Pawlinski R, Pedersen B, Erlich J, Mackman N. Role of tissue factor in haemostasis, thrombosis, angiogenesis and inflammation: lessons from low tissue factor mice. Thromb Haemost. 2004;92(3):444–50.PubMedGoogle Scholar
  11. 11.
    Owens 3rd AP, Mackman N. Tissue factor and thrombosis: the clot starts here. Thromb Haemost. 2010;104(3):432–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Osterud B. Tissue factor expression in blood cells. Thromb Res. 2010;125 Suppl 1:S31–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Mackman N, Tilley RE, Key NS. Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis. Arterioscler Thromb Vasc Biol. 2007;27(8):1687–93.PubMedCrossRefGoogle Scholar
  14. 14.
    Ross R, Glomset JA. Atherosclerosis and the arterial smooth muscle cell: proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science. 1973;180(4093):1332–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Ross R, Glomset JA. The pathogenesis of atherosclerosis (second of two parts). N Engl J Med. 1976;295(8):420–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Ross R, Glomset JA. The pathogenesis of atherosclerosis (first of two parts). N Engl J Med. 1976;295(7):369–77.PubMedCrossRefGoogle Scholar
  17. 17.
    Williams KJ, Tabas I. The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol. 1995;15(5):551–61.PubMedCrossRefGoogle Scholar
  18. 18.
    Capron L. Pathogenesis of atherosclerosis: an update on the three main theories. Ann Cardiol Angeiol (Paris). 1989;38(10):631–4.Google Scholar
  19. 19.
    Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A. 1979;76(1):333–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Stocker R, Keaney Jr JF. Role of oxidative modifications in atherosclerosis. Physiol Rev. 2004;84(4):1381–478.PubMedCrossRefGoogle Scholar
  21. 21.
    Breitenstein A, Tanner FC, Luscher TF. Tissue factor and cardiovascular disease: quo vadis? Circ J. 2010;74(1):3–12.PubMedCrossRefGoogle Scholar
  22. 22.
    Liu ML, Reilly MP, Casasanto P, McKenzie SE, Williams KJ. Cholesterol enrichment of human monocyte/macrophages induces surface exposure of phosphatidylserine and the release of biologically-active tissue factor-positive microvesicles. Arterioscler Thromb Vasc Biol. 2007;27(2):430–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Bochkov VN, Mechtcheriakova D, Lucerna M, et al. Oxidized phospholipids stimulate tissue factor expression in human endothelial cells via activation of ERK/EGR-1 and Ca(++)/NFAT. Blood. 2002;99(1):199–206.PubMedCrossRefGoogle Scholar
  24. 24.
    Schuff-Werner P, Claus G, Armstrong VW, Kostering H, Seidel D. Enhanced procoagulatory activity (PCA) of human monocytes/macrophages after in vitro stimulation with chemically modified LDL. Atherosclerosis. 1989;78(2–3):109–12.PubMedCrossRefGoogle Scholar
  25. 25.
    Drake TA, Hannani K, Fei HH, Lavi S, Berliner JA. Minimally oxidized low-density lipoprotein induces tissue factor expression in cultured human endothelial cells. Am J Pathol. 1991;138(3):601–7.PubMedGoogle Scholar
  26. 26.
    Meisel SR, Xu XP, Edgington TS, et al. Dose-dependent modulation of tissue factor protein and procoagulant activity in human monocyte-derived macrophages by oxidized low density lipoprotein. J Atheroscler Thromb. 2011.Google Scholar
  27. 27.
    Cui MZ, Penn MS, Chisolm GM. Native and oxidized low density lipoprotein induction of tissue factor gene expression in smooth muscle cells is mediated by both Egr-1 and Sp1. J Biol Chem. 1999;274(46):32795–802.PubMedCrossRefGoogle Scholar
  28. 28.
    •• Owens 3rd AP, Passam FH, Antoniak S, et al. Monocyte tissue factor-dependent activation of coagulation in hypercholesterolemic mice and monkeys is inhibited by simvastatin. J Clin Invest. 2012;122(2):558–68. This paper demonstrates that simvastatin can reduce hypercholesterolemia induction of TF and the activation of coagulation, independent of lipid-lowering. PubMedCrossRefGoogle Scholar
  29. 29.
    Borissoff JI, Heeneman S, Kilinc E, et al. Early atherosclerosis exhibits an enhanced procoagulant state. Circulation. 2010;122(8):821–30.PubMedCrossRefGoogle Scholar
  30. 30.
    Annex BH, Denning SM, Channon KM, et al. Differential expression of tissue factor protein in directional atherectomy specimens from patients with stable and unstable coronary syndromes. Circulation. 1995;91(3):619–22.PubMedCrossRefGoogle Scholar
  31. 31.
    Moreno PR, Bernardi VH, Lopez-Cuellar J, et al. Macrophages, smooth muscle cells, and tissue factor in unstable angina. Implications for cell-mediated thrombogenicity in acute coronary syndromes. Circulation. 1996;94(12):3090–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Marmur JD, Thiruvikraman SV, Fyfe BS, et al. Identification of active tissue factor in human coronary atheroma. Circulation. 1996;94(6):1226–32.PubMedCrossRefGoogle Scholar
  33. 33.
    Wilcox JN, Smith KM, Schwartz SM, Gordon D. Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci U S A. 1989;86(8):2839–43.PubMedCrossRefGoogle Scholar
  34. 34.
    Tremoli E, Camera M, Toschi V, Colli S. Tissue factor in atherosclerosis. Atherosclerosis. 1999;144(2):273–83.PubMedCrossRefGoogle Scholar
  35. 35.
    Ardissino D, Merlini PA, Arlens R, et al. Tissue factor in human coronary atherosclerotic plaques. Clin Chim Acta. 2000;291(2):235–40.PubMedCrossRefGoogle Scholar
  36. 36.
    Hatakeyama K, Asada Y, Marutsuka K, Sato Y, Kamikubo Y, Sumiyoshi A. Localization and activity of tissue factor in human aortic atherosclerotic lesions. Atherosclerosis. 1997;133(2):213–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Schecter AD, Berman AB, Yi L, et al. MCP-1-dependent signaling in CCR2(-/-) aortic smooth muscle cells. J Leukoc Biol. 2004;75(6):1079–85.PubMedCrossRefGoogle Scholar
  38. 38.
    Schecter AD, Rollins BJ, Zhang YJ, et al. Tissue factor is induced by monocyte chemoattractant protein-1 in human aortic smooth muscle and THP-1 cells. J Biol Chem. 1997;272(45):28568–73.PubMedCrossRefGoogle Scholar
  39. 39.
    Schecter AD, Spirn B, Rossikhina M, et al. Release of active tissue factor by human arterial smooth muscle cells. Circ Res. 2000;87(2):126–32.PubMedCrossRefGoogle Scholar
  40. 40.
    Leroyer AS, Isobe H, Leseche G, et al. Cellular origins and thrombogenic activity of microparticles isolated from human atherosclerotic plaques. J Am Coll Cardiol. 2007;49(7):772–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Antoniak S, Pawlinski R, Mackman N. Protease-activated receptors and myocardial infarction. IUBMB Life. 2011;63(6):383–9.PubMedCrossRefGoogle Scholar
  42. 42.
    • Borissoff JI, Spronk HM, ten Cate H. The hemostatic system as a modulator of atherosclerosis. N Engl J Med. 2011;364(18):1746–60. This review summarizes the current knowledge of coagulation factors examined in atherosclerosis. PubMedCrossRefGoogle Scholar
  43. 43.
    Doran AC, Meller N, McNamara CA. Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler Thromb Vasc Biol. 2008;28(5):812–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 2004;84(3):767–801.PubMedCrossRefGoogle Scholar
  45. 45.
    Campbell JH, Campbell GR. The role of smooth muscle cells in atherosclerosis. Curr Opin Lipidol. 1994;5(5):323–30.PubMedCrossRefGoogle Scholar
  46. 46.
    Worth NF, Rolfe BE, Song J, Campbell GR. Vascular smooth muscle cell phenotypic modulation in culture is associated with reorganisation of contractile and cytoskeletal proteins. Cell Motil Cytoskeleton. 2001;49(3):130–45.PubMedCrossRefGoogle Scholar
  47. 47.
    Pyo RT, Sato Y, Mackman N, Taubman MB. Mice deficient in tissue factor demonstrate attenuated intimal hyperplasia in response to vascular injury and decreased smooth muscle cell migration. Thromb Haemost. 2004;92(3):451–8.PubMedGoogle Scholar
  48. 48.
    Marutsuka K, Hatakeyama K, Sato Y, Yamashita A, Sumiyoshi A, Asada Y. Protease-activated receptor 2 (PAR2) mediates vascular smooth muscle cell migration induced by tissue factor/factor VIIa complex. Thromb Res. 2002;107(5):271–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Demetz G, Seitz I, Stein A, et al. Tissue factor-factor VIIa complex induces cytokine expression in coronary artery smooth muscle cells. Atherosclerosis. 2010;212(2):466–71.PubMedCrossRefGoogle Scholar
  50. 50.
    Schonbeck U, Mach F, Sukhova GK, et al. CD40 ligation induces tissue factor expression in human vascular smooth muscle cells. Am J Pathol. 2000;156(1):7–14.PubMedCrossRefGoogle Scholar
  51. 51.
    Mach F, Schonbeck U, Bonnefoy JY, Pober JS, Libby P. Activation of monocyte/macrophage functions related to acute atheroma complication by ligation of CD40: induction of collagenase, stromelysin, and tissue factor. Circulation. 1997;96(2):396–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Mach F, Schonbeck U, Sukhova GK, et al. Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for CD40-CD40 ligand signaling in atherosclerosis. Proc Natl Acad Sci U S A. 1997;94(5):1931–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Schonbeck U, Sukhova GK, Shimizu K, Mach F, Libby P. Inhibition of CD40 signaling limits evolution of established atherosclerosis in mice. Proc Natl Acad Sci U S A. 2000;97(13):7458–63.PubMedCrossRefGoogle Scholar
  54. 54.
    Tilley RE, Pedersen B, Pawlinski R, et al. Atherosclerosis in mice is not affected by a reduction in tissue factor expression. Arterioscler Thromb Vasc Biol. 2006;26(3):555–62.PubMedCrossRefGoogle Scholar
  55. 55.
    Roselaar SE, Daugherty A. Apolipoprotein E-deficient mice have impaired innate immune responses to Listeria monocytogenes in vivo. J Lipid Res. 1998;39(9):1740–3.PubMedGoogle Scholar
  56. 56.
    Pepe MG, Curtiss LK. Apolipoprotein E is a biologically active constituent of the normal immunoregulatory lipoprotein, LDL-In. J Immunol. 1986;136(10):3716–23.PubMedGoogle Scholar
  57. 57.
    Westrick RJ, Bodary PF, Xu Z, Shen YC, Broze GJ, Eitzman DT. Deficiency of tissue factor pathway inhibitor promotes atherosclerosis and thrombosis in mice. Circulation. 2001;103(25):3044–6.PubMedCrossRefGoogle Scholar
  58. 58.
    •• Pan S, White TA, Witt TA, Chiriac A, Mueske CS, Simari RD. Vascular-directed tissue factor pathway inhibitor overexpression regulates plasma cholesterol and reduces atherosclerotic plaque development. Circ Res. 2009;105(7):713–20. 718 p following 720. This paper demonstrates TFPI overexpression can reduce experimental atherosclerosis, which implicates TF in the atherosclerotic process. PubMedCrossRefGoogle Scholar
  59. 59.
    Owens 3rd AP, Mackman N. Sources of tissue factor that contribute to thrombosis after rupture of an atherosclerotic plaque. Thromb Res. 2012;129 Suppl 2:S30–3.PubMedCrossRefGoogle Scholar
  60. 60.
    Fuster V, Fallon JT, Badimon JJ, Nemerson Y. The unstable atherosclerotic plaque: clinical significance and therapeutic intervention. Thromb Haemost. 1997;78(1):247–55.PubMedGoogle Scholar
  61. 61.
    Thiruvikraman SV, Guha A, Roboz J, Taubman MB, Nemerson Y, Fallon JT. In situ localization of tissue factor in human atherosclerotic plaques by binding of digoxigenin-labeled factors VIIa and X. Lab Investig. 1996;75(4):451–61.PubMedGoogle Scholar
  62. 62.
    Ichikawa K, Nakagawa K, Hirano K, Sueishi K. The localization of tissue factor and apolipoprotein(a) in atherosclerotic lesions of the human aorta and their relation to fibrinogen-fibrin transition. Pathol Res Pract. 1996;192(3):224–32.PubMedCrossRefGoogle Scholar
  63. 63.
    Muhlfelder TW, Teodorescu V, Rand J, Rosman A, Niemetz J. Human atheromatous plaque extracts induce tissue factor activity (TFa) in monocytes and also express constitutive TFa. Thromb Haemost. 1999;81(1):146–50.PubMedGoogle Scholar
  64. 64.
    Jonasson L, Holm J, Skalli O, Bondjers G, Hansson GK. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis. 1986;6(2):131–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Toschi V, Gallo R, Lettino M, et al. Tissue factor modulates the thrombogenicity of human atherosclerotic plaques. Circulation. 1997;95(3):594–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Ardissino D, Merlini PA, Ariens R, Coppola R, Bramucci E, Mannucci PM. Tissue-factor antigen and activity in human coronary atherosclerotic plaques. Lancet. 1997;349(9054):769–71.PubMedCrossRefGoogle Scholar
  67. 67.
    Kaikita K, Takeya M, Ogawa H, Suefuji H, Yasue H, Takahashi K. Co-localization of tissue factor and tissue factor pathway inhibitor in coronary atherosclerosis. J Pathol. 1999;188(2):180–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Caplice NM, Mueske CS, Kleppe LS, Simari RD. Presence of tissue factor pathway inhibitor in human atherosclerotic plaques is associated with reduced tissue factor activity. Circulation. 1998;98(11):1051–7.PubMedCrossRefGoogle Scholar
  69. 69.
    • Basavaraj MG, Sovershaev MA, Egorina EM, et al. Circulating monocytes mirror the imbalance in TF and TFPI expression in carotid atherosclerotic plaques with lipid-rich and calcified morphology. Thromb Res. 2012;129(4):e134–41. This paper highlights the importance of the TF/TFPI ratio in circulating monocytes in determining thrombogenicity of atherosclerotic disease.PubMedCrossRefGoogle Scholar
  70. 70.
    Morishita E, Asakura H, Saito M, et al. Elevated plasma levels of free-form of TFPI antigen in hypercholesterolemic patients. Atherosclerosis. 2001;154(1):203–12.PubMedCrossRefGoogle Scholar
  71. 71.
    Caplice NM, Panetta C, Peterson TE, et al. Lipoprotein (a) binds and inactivates tissue factor pathway inhibitor: a novel link between lipoproteins and thrombosis. Blood. 2001;98(10):2980–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Kronenberg F, Kronenberg MF, Kiechl S, et al. Role of lipoprotein(a) and apolipoprotein(a) phenotype in atherogenesis: prospective results from the Bruneck study. Circulation. 1999;100(11):1154–60.PubMedCrossRefGoogle Scholar
  73. 73.
    Rath M, Pauling L. Immunological evidence for the accumulation of lipoprotein(a) in the atherosclerotic lesion of the hypoascorbemic guinea pig. Proc Natl Acad Sci U S A. 1990;87(23):9388–90.PubMedCrossRefGoogle Scholar
  74. 74.
    Mallat Z, Hugel B, Ohan J, Leseche G, Freyssinet JM, Tedgui A. Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: a role for apoptosis in plaque thrombogenicity. Circulation. 1999;99(3):348–53.PubMedCrossRefGoogle Scholar
  75. 75.
    Mayr M, Grainger D, Mayr U, et al. Proteomics, metabolomics, and immunomics on microparticles derived from human atherosclerotic plaques. Circ Cardiovasc Genet. 2009;2(4):379–88.PubMedCrossRefGoogle Scholar
  76. 76.
    Bonderman D, Teml A, Jakowitsch J, et al. Coronary no-reflow is caused by shedding of active tissue factor from dissected atherosclerotic plaque. Blood. 2002;99(8):2794–800.PubMedCrossRefGoogle Scholar
  77. 77.
    •• Rautou PE, Leroyer AS, Ramkhelawon B, et al. Microparticles from human atherosclerotic plaques promote endothelial ICAM-1-dependent monocyte adhesion and transendothelial migration. Circ Res. 2011;108(3):335–43. This paper describes how plaque-derived MPs can contribute to monocyte transmigration into the atheroma resulting in continued progression of atherosclerosis.PubMedCrossRefGoogle Scholar
  78. 78.
    Wang L, Miller C, Swarthout RF, Rao M, Mackman N, Taubman MB. Vascular smooth muscle-derived tissue factor is critical for arterial thrombosis after ferric chloride-induced injury. Blood. 2009;113(3):705–13.PubMedCrossRefGoogle Scholar
  79. 79.
    Kretz CA, Vaezzadeh N, Gross PL. Tissue factor and thrombosis models. Arterioscler Thromb Vasc Biol. 2010;30(5):900–8.PubMedCrossRefGoogle Scholar
  80. 80.
    •• Owens 3rd AP, Mackman N. Microparticles in hemostasis and thrombosis. Circ Res. 2011;108(10):1284–97. This review summarizes the current knowledge on MPs in hemostasis and thrombosis, including the role of TF-positive MPs in cardiovascular disease.PubMedCrossRefGoogle Scholar
  81. 81.
    Eitzman DT, Westrick RJ, Xu Z, Tyson J, Ginsburg D. Hyperlipidemia promotes thrombosis after injury to atherosclerotic vessels in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2000;20(7):1831–4.PubMedCrossRefGoogle Scholar
  82. 82.
    • Mause SF, Weber C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res. 2010;107(9):1047–57. This review summarizes how MPs can act as messanger vessicles to deliver various proteins to adjacent or distant cells.PubMedCrossRefGoogle Scholar
  83. 83.
    Amabile N, Rautou PE, Tedgui A, Boulanger CM. Microparticles: key protagonists in cardiovascular disorders. Semin Thromb Hemost. 2010;36(8):907–16.PubMedCrossRefGoogle Scholar
  84. 84.
    Matsumoto N, Nomura S, Kamihata H, Kimura Y, Iwasaka T. Increased level of oxidized LDL-dependent monocyte-derived microparticles in acute coronary syndrome. Thromb Haemost. 2004;91(1):146–54.PubMedGoogle Scholar
  85. 85.
    Ferro D, Basili S, Alessandri C, Cara D, Violi F. Inhibition of tissue-factor-mediated thrombin generation by simvastatin. Atherosclerosis. 2000;149(1):111–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Ferro D, Basili S, Alessandri C, Mantovani B, Cordova C, Violi F. Simvastatin reduces monocyte-tissue-factor expression type IIa hypercholesterolaemia. Lancet. 1997;350(9086):1222.PubMedCrossRefGoogle Scholar
  87. 87.
    Soejima H, Ogawa H, Yasue H, et al. Heightened tissue factor associated with tissue factor pathway inhibitor and prognosis in patients with unstable angina. Circulation. 1999;99(22):2908–13.PubMedCrossRefGoogle Scholar
  88. 88.
    Mallat Z, Benamer H, Hugel B, et al. Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation. 2000;101(8):841–3.PubMedCrossRefGoogle Scholar
  89. 89.
    Morel O, Pereira B, Averous G, et al. Increased levels of procoagulant tissue factor-bearing microparticles within the occluded coronary artery of patients with ST-segment elevation myocardial infarction: role of endothelial damage and leukocyte activation. Atherosclerosis. 2009;204(2):636–41.PubMedCrossRefGoogle Scholar
  90. 90.
    Steppich B, Mattisek C, Sobczyk D, Kastrati A, Schomig A, Ott I. Tissue factor pathway inhibitor on circulating microparticles in acute myocardial infarction. Thromb Haemost. 2005;93(1):35–9.PubMedGoogle Scholar
  91. 91.
    Huisse MG, Lanoy E, Tcheche D, et al. Prothrombotic markers and early spontaneous recanalization in ST-segment elevation myocardial infarction. Thromb Haemost. 2007;98(2):420–6.PubMedGoogle Scholar
  92. 92.
    Huisse MG, Ajzenberg N, Feldman L, Guillin MC, Steg PG. Microparticle-linked tissue factor activity and increased thrombin activity play a potential role in fibrinolysis failure in ST-segment elevation myocardial infarction. Thromb Haemost. 2009;101(4):734–40.PubMedGoogle Scholar
  93. 93.
    •• Rautou PE, Vion AC, Amabile N, et al. Microparticles, vascular function, and atherothrombosis. Circ Res. 2011;109(5):593–606. This review summarizes how MPs may contribute to the process of atherothrombosis.PubMedCrossRefGoogle Scholar
  94. 94.
    Khorana AA, Francis CW, Menzies KE, et al. Plasma tissue factor may be predictive of venous thromboembolism in pancreatic cancer. J Thromb Haemost. 2008;6(11):1983–5.PubMedCrossRefGoogle Scholar
  95. 95.
    Ma Y, Wang W, Zhang J, et al. Hyperlipidemia and atherosclerotic lesion development in ldlr-deficient mice on a long-term high-fat diet. PLoS One. 2012;7(4):e35835.PubMedCrossRefGoogle Scholar
  96. 96.
    Kowala MC, Recce R, Beyer S, Gu C, Valentine M. Characterization of atherosclerosis in LDL receptor knockout mice: macrophage accumulation correlates with rapid and sustained expression of aortic MCP-1/JE. Atherosclerosis. 2000;149(2):323–30.PubMedCrossRefGoogle Scholar
  97. 97.
    Steinberg D. The pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy, part IV: the 1984 coronary primary prevention trial ends it–almost. J Lipid Res. 2006;47(1):1–14.PubMedCrossRefGoogle Scholar
  98. 98.
    Nissen SE, Nicholls SJ, Sipahi I, et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA. 2006;295(13):1556–65.PubMedCrossRefGoogle Scholar
  99. 99.
    Antman EM, Anbe DT, Armstrong PW, et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction–executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1999 Guidelines for the Management of Patients With Acute Myocardial Infarction). Circulation. 2004;110(5):588–636.PubMedCrossRefGoogle Scholar
  100. 100.
    Monetti M, Canavesi M, Camera M, et al. Rosuvastatin displays anti-atherothrombotic and anti-inflammatory properties in apoE-deficient mice. Pharmacol Res. 2007;55(5):441–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Tuomisto TT, Lumivuori H, Kansanen E, et al. Simvastatin has an anti-inflammatory effect on macrophages via upregulation of an atheroprotective transcription factor, Kruppel-like factor 2. Cardiovasc Res. 2008;78(1):175–84.PubMedCrossRefGoogle Scholar
  102. 102.
    Bea F, Blessing E, Shelley MI, Shultz JM, Rosenfeld ME. Simvastatin inhibits expression of tissue factor in advanced atherosclerotic lesions of apolipoprotein E deficient mice independently of lipid lowering: potential role of simvastatin-mediated inhibition of Egr-1 expression and activation. Atherosclerosis. 2003;167(2):187–94.PubMedCrossRefGoogle Scholar
  103. 103.
    Aikawa M, Rabkin E, Sugiyama S, et al. An HMG-CoA reductase inhibitor, cerivastatin, suppresses growth of macrophages expressing matrix metalloproteinases and tissue factor in vivo and in vitro. Circulation. 2001;103(2):276–83.PubMedCrossRefGoogle Scholar
  104. 104.
    Baetta R, Camera M, Comparato C, Altana C, Ezekowitz MD, Tremoli E. Fluvastatin reduces tissue factor expression and macrophage accumulation in carotid lesions of cholesterol-fed rabbits in the absence of lipid lowering. Arterioscler Thromb Vasc Biol. 2002;22(4):692–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Colli S, Eligini S, Lalli M, Camera M, Paoletti R, Tremoli E. Vastatins inhibit tissue factor in cultured human macrophages. A novel mechanism of protection against atherothrombosis. Arterioscler Thromb Vasc Biol. 1997;17(2):265–72.PubMedCrossRefGoogle Scholar
  106. 106.
    Sukhova GK, Williams JK, Libby P. Statins reduce inflammation in atheroma of nonhuman primates independent of effects on serum cholesterol. Arterioscler Thromb Vasc Biol. 2002;22(9):1452–8.PubMedCrossRefGoogle Scholar
  107. 107.
    Casani L, Sanchez-Gomez S, Vilahur G, Badimon L. Pravastatin reduces thrombogenicity by mechanisms beyond plasma cholesterol lowering. Thromb Haemost. 2005;94(5):1035–41.PubMedGoogle Scholar
  108. 108.
    Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986;232(4746):34–47.PubMedCrossRefGoogle Scholar
  109. 109.
    Ridker PM, Fonseca FA, Genest J, et al. Baseline characteristics of participants in the JUPITER trial, a randomized placebo-controlled primary prevention trial of statin therapy among individuals with low low-density lipoprotein cholesterol and elevated high-sensitivity C-reactive protein. Am J Cardiol. 2007;100(11):1659–64.PubMedCrossRefGoogle Scholar
  110. 110.
    •• Glynn RJ, Danielson E, Fonseca FA, et al. A randomized trial of rosuvastatin in the prevention of venous thromboembolism. N Engl J Med. 2009;360(18):1851–61. This paper provides the first description of how statin therapy can prevent thrombotic events in relatively healthy patients with no history of hypercholesterolemia.PubMedCrossRefGoogle Scholar
  111. 111.
    Napoleone E, Di Santo A, Camera M, Tremoli E, Lorenzet R. Angiotensin-converting enzyme inhibitors downregulate tissue factor synthesis in monocytes. Circ Res. 2000;86(2):139–43.PubMedCrossRefGoogle Scholar
  112. 112.
    Soejima H, Ogawa H, Yasue H, et al. Angiotensin-converting enzyme inhibition reduces monocyte chemoattractant protein-1 and tissue factor levels in patients with myocardial infarction. J Am Coll Cardiol. 1999;34(4):983–8.PubMedCrossRefGoogle Scholar
  113. 113.
    Yusuf S, Pepine CJ, Garces C, et al. Effect of enalapril on myocardial infarction and unstable angina in patients with low ejection fractions. Lancet. 1992;340(8829):1173–8.PubMedCrossRefGoogle Scholar
  114. 114.
    GISSI-3: effects of lisinopril and transdermal glyceryl trinitrate singly and together on 6-week mortality and ventricular function after acute myocardial infarction. Lancet. 1994;343(8906):1115–1122.Google Scholar
  115. 115.
    Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. The SOLVD Investigators. N Engl J Med. 1991;325(5):293–302.Google Scholar
  116. 116.
    Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. The SOLVD Investigattors. N Engl J Med. 1992;327(10):685–691.Google Scholar
  117. 117.
    Schindler R, Dinarello CA, Koch KM. Angiotensin-converting-enzyme inhibitors suppress synthesis of tumour necrosis factor and interleukin 1 by human peripheral blood mononuclear cells. Cytokine. 1995;7(6):526–33.PubMedCrossRefGoogle Scholar
  118. 118.
    Fukuzawa M, Satoh J, Sagara M, et al. Angiotensin converting enzyme inhibitors suppress production of tumor necrosis factor-alpha in vitro and in vivo. Immunopharmacology. 1997;36(1):49–55.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Medicine, Division of Hematology and Oncology, McAllister Heart InstituteUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations