Current Atherosclerosis Reports

, Volume 14, Issue 5, pp 476–483

Evolving Concepts of Oxidative Stress and Reactive Oxygen Species in Cardiovascular Disease

Clinical Trials and Their Interpretations (J Plutzky, Section Editor)


Cardiovascular disease (CVD) continues to be a substantial health-care burden, despite recent treatment advances. Oxidative stress has long been regarded as a key pathophysiological mediator that ultimately leads to CVD including atherosclerosis, hypertension and heart failure. Over the past decade, emerging evidence has shifted our understanding of reactive oxygen species (ROS) from its harmful role to being signaling molecules. Here, we reviewed recent advances in our understanding of ROS that mediate the complex process of CVDs, with a focus on major ROS signaling and sources such as mitochondria and Nicotinamide Adenine Dinucleotide Phosphate (NADPH) oxidases.


Reactive oxygen species Oxidative stress Oxidative signaling Cardiovascular disease Oxidative biomarker Antioxidant therapy Atherosclerosis Hypertension 


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Keaney JF, Larson MG, Vasan RS, Wilson PWF, Lipinska I, Corey D, et al. Framingham Study. Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. Arterioscler Thromb Vasc Biol. 2003;23:434–39.PubMedCrossRefGoogle Scholar
  2. 2.
    Rao F, Zhang K, Khandrika S, Mahata M, Fung MM, Ziegler MG, et al. Isoprostane, an “intermediate phenotype” for oxidative stress heritability, risk trait associations, and the influence of chromogranin B polymorphism. J Am Coll Cardiol. 2010;56:1338–50.PubMedCrossRefGoogle Scholar
  3. 3.
    Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004;4:181–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Kuijpers T, Lutter R. Inflammation and repeated infections in CGD: two sides of a coin. Cell Mol Life Sci. 2012;69:7–15.PubMedCrossRefGoogle Scholar
  5. 5.
    West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature. 2011;472:476–80.PubMedCrossRefGoogle Scholar
  6. 6.
    Urao N, Inomata H, Razvi M, Kim HW, Wary K, McKinney R, et al. Role of nox2-based NADPH oxidase in bone marrow and progenitor cell function involved in neovascularization induced by hindlimb ischemia. Circ Res. 2008;103:212–20.PubMedCrossRefGoogle Scholar
  7. 7.
    • Hecker L, Vittal R, Jones T, Jagirdar R, Luckhardt TR, Horowitz JC, et al. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med. 2009;15:1077–81. This article shows that TGF-beta-1-induced Nox4 expression and genetic or pharmacologic targeting of Nox4 abrogates fibrogenesis in lung injury mice models.PubMedCrossRefGoogle Scholar
  8. 8.
    Chen C, Thomas SR, Keaney JF. Beyond LDL oxidation: ROS in vascular signal transduction. Free Radic Biol Med. 2003;35:117–32.PubMedCrossRefGoogle Scholar
  9. 9.
    Liu X, Zweier JL. A real-time electrochemical technique for measurement of cellular hydrogen peroxide generation and consumption: evaluation in human polymorphonuclear leukocytes. Free Radic Biol Med. 2001;31:894–901.PubMedCrossRefGoogle Scholar
  10. 10.
    Storozhevykh TP, Senilova YE, Persiyantseva NA, Pinelis VG, Pomytkin IA. Mitochondrial respiratory chain is involved in insulin-stimulated hydrogen peroxide production and plays an integral role in insulin receptor autophosphorylation in neurons. BMC Neurosci. 2007;8:84.PubMedCrossRefGoogle Scholar
  11. 11.
    Jin H, Heller DA, Kalbacova M, Kim J-H, Zhang J, Boghossian AA, et al. Detection of single-molecule H2O2 signalling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes. Nat Nanotechnol. 2010;5:302–9.PubMedCrossRefGoogle Scholar
  12. 12.
    D’Autréaux B, Toledano MB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 2007;8:813–24.PubMedCrossRefGoogle Scholar
  13. 13.
    Stocker R, Keaney JF. Role of oxidative modifications in atherosclerosis. Physiol Rev. 2004;84:1381–478.PubMedCrossRefGoogle Scholar
  14. 14.
    Yoshida H, Kisugi R. Mechanisms of LDL oxidation. Clin Chim Acta. 2010;411:1875–82.PubMedCrossRefGoogle Scholar
  15. 15.
    Levitan I, Volkov S, Subbaiah PV. Oxidized LDL: diversity, patterns of recognition, and pathophysiology. Antioxid Redox Signal. 2010;13:39–75.PubMedCrossRefGoogle Scholar
  16. 16.
    Azumi H, Inoue N, Takeshita S, Rikitake Y, Kawashima S, Hayashi Y, et al. Expression of NADH/NADPH oxidase p22phox in human coronary arteries. Circulation. 1999;100:1494–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Sorescu D, Weiss D, Lassègue B, Clempus RE, Szöcs K, Sorescu GP, Valppu L, Quinn MT, Lambeth JD, Vega JD, Taylor WR, Griendling KK. Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation. 2002;105:1429–35.PubMedCrossRefGoogle Scholar
  18. 18.
    Judkins CP, Diep H, Broughton BRS, Mast AE, Hooker EU, Miller AA, et al. Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE-/- mice. Am J Physiol Heart Circ Physiol. 2010;298:H24–32.PubMedCrossRefGoogle Scholar
  19. 19.
    Guzik TJ, Chen W, Gongora MC, Guzik B, Lob HE, Mangalat D, et al. Calcium-dependent NOX5 nicotinamide adenine dinucleotide phosphate oxidase contributes to vascular oxidative stress in human coronary artery disease. J Am Coll Cardiol. 2008;52:1803–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Corral-Debrinski M, Shoffner JM, Lott MT, Wallace DC. Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mutat Res. 1992;275:169–80.PubMedCrossRefGoogle Scholar
  21. 21.
    Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469:221–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464:1357–61.PubMedCrossRefGoogle Scholar
  23. 23.
    Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262–75.PubMedCrossRefGoogle Scholar
  24. 24.
    • Liao X, Sluimer JC, Wang Y, Subramanian M, Brown K, Pattison JS, et al. Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab. 2012;15:545–53. This article showed that inhibition of autophagy promotes apoptosis and NADPH oxidase-mediated oxidative stress, and defective efferocytosis.PubMedCrossRefGoogle Scholar
  25. 25.
    Epstein BJ, Smith SM, Choksi R. Recent changes in the landscape of combination RAS blockade. Expert Rev Cardiovasc Ther. 2009;7:1373–84.PubMedCrossRefGoogle Scholar
  26. 26.
    Chabrashvili T, Kitiyakara C, Blau J, Karber A, Aslam S, Welch WJ, et al. Effects of ANG II type 1 and 2 receptors on oxidative stress, renal NADPH oxidase, and SOD expression. Am J Physiol Regul Integr Comp Physiol. 2003;285:R117–24.PubMedGoogle Scholar
  27. 27.
    Kitiyakara C, Chabrashvili T, Chen Y, Blau J, Karber A, Aslam S, et al. Salt intake, oxidative stress, and renal expression of NADPH oxidase and superoxide dismutase. J Am Soc Nephrol. 2003;14:2775–82.PubMedCrossRefGoogle Scholar
  28. 28.
    • Feng D, Yang C, Geurts AM, Kurth T, Liang M, Lazar J, et al. Increased expression of NAD(P)H oxidase subunit p67(phox) in the renal medulla contributes to excess oxidative stress and salt-sensitive hypertension. Cell Metab. 2012;15:201–8. This article shows that the higher expression of p67(phox), not the other subunits, was associated with higher Nox activity and salt sensitivity, and disruption of p67(phox) resulted in reduction of salt-sensitive hypertension and renal medullary oxidative stress/injury.PubMedCrossRefGoogle Scholar
  29. 29.
    Matsuno K, Yamada H, Iwata K, Jin D, Katsuyama M, Matsuki M, et al. Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. Circulation. 2005;112:2677–85.PubMedCrossRefGoogle Scholar
  30. 30.
    Wang HD, Xu S, Johns DG, Du Y, Quinn MT, Cayatte AJ, et al. Role of NADPH oxidase in the vascular hypertrophic and oxidative stress response to angiotensin II in mice. Circ Res. 2001;88:947–53.PubMedCrossRefGoogle Scholar
  31. 31.
    Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 2007;204:2449–60.PubMedCrossRefGoogle Scholar
  32. 32.
    Zhang A, Jia Z, Wang N, Tidwell TJ, Yang T. Relative contributions of mitochondria and NADPH oxidase to deoxycorticosterone acetate-salt hypertension in mice. Kidney Int. 2011;80:51–60.PubMedCrossRefGoogle Scholar
  33. 33.
    • Dikalova AE, Bikineyeva AT, Budzyn K, Nazarewicz RR, McCann L, Lewis W, et al. Therapeutic targeting of mitochondrial superoxide in hypertension. Circ Res. 2010;107:106–16. This article shows that treatment with the mitochondrial-targeted antioxidant mitoTEMPO attenuated hypertension and overexpression of SOD2 in transgenic mice demonstreated attenuated angiotensin-II-induced hypertension.PubMedCrossRefGoogle Scholar
  34. 34.
    Widder JD, Fraccarollo D, Galuppo P, Hansen JM, Jones DP, Ertl G, et al. Attenuation of angiotensin II-induced vascular dysfunction and hypertension by overexpression of Thioredoxin 2. Hypertension. 2009;54:338–44.PubMedCrossRefGoogle Scholar
  35. 35.
    Doughan AK, Harrison DG, Dikalov SI. Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res. 2008;102:488–96.PubMedCrossRefGoogle Scholar
  36. 36.
    Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148:399–408.PubMedCrossRefGoogle Scholar
  37. 37.
    Ushio-Fukai M, Tang Y, Fukai T, Dikalov SI, Ma Y, Fujimoto M, et al. Novel role of gp91(phox)-containing NAD(P)H oxidase in vascular endothelial growth factor-induced signaling and angiogenesis. Circ Res. 2002;91:1160–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Tojo T, Ushio-Fukai M, Yamaoka-Tojo M, Ikeda S, Patrushev N, Alexander RW. Role of gp91phox (Nox2)-containing NAD(P)H oxidase in angiogenesis in response to hindlimb ischemia. Circulation. 2005;111:2347–55.PubMedCrossRefGoogle Scholar
  39. 39.
    Bhandarkar SS, Jaconi M, Fried LE, Bonner MY, Lefkove B, Govindarajan B, et al. Fulvene-5 potently inhibits NADPH oxidase 4 and blocks the growth of endothelial tumors in mice. J Clin Invest. 2009;119:2359–65.PubMedGoogle Scholar
  40. 40.
    •• Craige SM, Chen C, Pei Y, Li C, Huang X, Chen C, et al. NADPH oxidase 4 promotes endothelial angiogenesis through endothelial nitric oxide synthase activation. Circulation. 2011;124:731–40. This article shows endothelial-specific Nox4-overexpressing mice had accelerated recovery from hindlimb ischemia through enhanced angiogenesis.PubMedCrossRefGoogle Scholar
  41. 41.
    •• Schröder K, Zhang M, Benkhoff S, Mieth A, Pliquett R, Kosowski J, et al. Nox4 Is a Protective Reactive Oxygen Species Generating Vascular NADPH Oxidase. Circ Res. 2012 in press. This article shows that Nox4-null mice exhibited attenuated angiogenesis and reduced eNOS expression. Google Scholar
  42. 42.
    Thomas SR, Chen C, Keaney JF. Hydrogen peroxide activates endothelial nitric-oxide synthase through coordinated phosphorylation and dephosphorylation via a phosphoinositide 3-kinase-dependent signaling pathway. J Biol Chem. 2002;277:6017–24.PubMedCrossRefGoogle Scholar
  43. 43.
    Hartvigsen K, Chou M-Y, Hansen LF, Shaw PX, Tsimikas S, Binder CJ, et al. The role of innate immunity in atherogenesis. J Lipid Res. 2009;50(Suppl):S388–93.PubMedCrossRefGoogle Scholar
  44. 44.
    Tsimikas S, Brilakis ES, Miller ER, McConnell JP, Lennon RJ, Kornman KS, et al. Oxidized phospholipids, Lp(a) lipoprotein, and coronary artery disease. N Engl J Med. 2005;353:46–57.PubMedCrossRefGoogle Scholar
  45. 45.
    Kiechl S, Willeit J, Mayr M, Viehweider B, Oberhollenzer M, Kronenberg F, et al. Oxidized phospholipids, lipoprotein(a), lipoprotein-associated phospholipase A2 activity, and 10-year cardiovascular outcomes: prospective results from the Bruneck study. Arterioscler Thromb Vasc Biol. 2007;27:1788–95.PubMedCrossRefGoogle Scholar
  46. 46.
    • Briley-Saebo KC, Cho Y-S, Shaw PX, Ryu SK, Mani V, Dickson S, et al. Targeted iron oxide particles for in vivo magnetic resonance detection of atherosclerotic lesions with antibodies directed to oxidation-specific epitopes. J Am Coll Cardiol. 2011;57:337–47. This article shows following intravenous injection of targeted Mn micelles, strong MR signal was observed 48–72 h with colocalization within intraplaque macrophages.PubMedCrossRefGoogle Scholar
  47. 47.
    Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63.PubMedCrossRefGoogle Scholar
  48. 48.
    Vita JA, Brennan M-L, Gokce N, Mann SA, Goormastic M, Shishehbor MH, et al. Serum myeloperoxidase levels independently predict endothelial dysfunction in humans. Circulation. 2004;110:1134–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Baldus S, Heeschen C, Meinertz T, Zeiher AM, Eiserich JP, Münzel T, CAPTURE Investigators, et al. Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation. 2003;108:1440–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Nicholls SJ, Tang WHW, Brennan D, Brennan M-L, Mann S, Nissen SE, et al. Risk prediction with serial myeloperoxidase monitoring in patients with acute chest pain. Clin Chem. 2011;57:1762–70.PubMedCrossRefGoogle Scholar
  51. 51.
    Hazell LJ, Arnold L, Flowers D, Waeg G, Malle E, Stocker R. Presence of hypochlorite-modified proteins in human atherosclerotic lesions. J Clin Invest. 1996;97:1535–44.PubMedCrossRefGoogle Scholar
  52. 52.
    Sugiyama S, Okada Y, Sukhova GK, Virmani R, Heinecke JW, Libby P. Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes. Am J Pathol. 2001;158:879–91.PubMedCrossRefGoogle Scholar
  53. 53.
    Naruko T, Ueda M, Haze K, van der Wal AC, van der Loos CM, Itoh A, et al. Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation. 2002;106:2894–900.PubMedCrossRefGoogle Scholar
  54. 54.
    Buffon A, Biasucci LM, Liuzzo G, D’Onofrio G, Crea F, Maseri A. Widespread coronary inflammation in unstable angina. N Engl J Med. 2002;347:5–12.PubMedCrossRefGoogle Scholar
  55. 55.
    Baldus S, Rudolph V, Roiss M, Ito WD, Rudolph TK, Eiserich JP, et al. Heparins increase endothelial nitric oxide bioavailability by liberating vessel-immobilized myeloperoxidase. Circulation. 2006;113:1871–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Shih J, Datwyler SA, Hsu SC, Matias MS, Pacenti DP, Lueders C, et al. Effect of collection tube type and preanalytical handling on myeloperoxidase concentrations. Clin Chem. 2008;54:1076–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P. The HOPE (Heart Outcomes Prevention Evaluation) Study Investigators. Vit E supplementation and cardiovascular events in high-risk patients. N Engl J Med. 2000;342:154–60.PubMedCrossRefGoogle Scholar
  58. 58.
    Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360:23–33.CrossRefGoogle Scholar
  59. 59.
    Lonn E, Bosch J, Yusuf S, Sheridan P, Pogue J, Arnold JM, et al. HOPE and HOPE-TOO Trial Investigators. Effect of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized, controlled trial. JAMA. 2005;293:1338–47.PubMedCrossRefGoogle Scholar
  60. 60.
    Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM, Kastelein JJ, JUPITER Trial Study Group, et al. Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: a prospective study of the JUPITER trial. Lancet. 2009;373:1175–82.PubMedCrossRefGoogle Scholar
  61. 61.
    Singh U, Devaraj S, Jialal I, Siegel D. Comparison effect of atorvastatin (10 versus 80 mg) on biomarkers of inflammation and oxidative stress in subjects with metabolic syndrome. Am J Cardiol. 2008;102:321–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Wang C-Y, Liu P-Y, Liao JK. Pleiotropic effects of statin therapy: molecular mechanisms and clinical results. Trends Mol Med. 2008;14:37–44.PubMedCrossRefGoogle Scholar
  63. 63.
    • Antoniades C, Bakogiannis C, Leeson P, Guzik TJ, Zhang M-H, Tousoulis D, et al. Rapid, direct effects of statin treatment on arterial redox state and nitric oxide bioavailability in human atherosclerosis via tetrahydrobiopterin-mediated endothelial nitric oxide synthase coupling. Circulation. 2011;124:335–45. This article shows statin treatment in patients undergoing coronary artery bypass graft surgery was associated with improved vascular nitric oxide bioavailability and reduced superoxide generation in internal mammary artery.PubMedCrossRefGoogle Scholar
  64. 64.
    Adlam VJ, Harrison JC, Porteous CM, James AM, Smith RAJ, Murphy MP, et al. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J. 2005;19:1088–95.PubMedCrossRefGoogle Scholar
  65. 65.
    •• Mercer JR, Yu E, Figg N, Cheng K-K, Prime TA, Griffin JL, et al. The mitochondria-targeted antioxidant MitoQ decreases features of the metabolic syndrome in ATM+/-/ApoE-/- mice. Free Radic Biol Med. 2012;52:841–9. This article shows that MitoQ intake orally prevented the increased adposity, hypercholesterolemia, and hypertriglyceridemia, and corrected hyperglycemia and hepatic steatosis.PubMedCrossRefGoogle Scholar
  66. 66.
    • Gane EJ, Weilert F, Orr DW, Keogh GF, Gibson M, Lockhart MM, et al. The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. Liver Int. 2010;30:1019–26. This article shows that treatment with oral MitoQ in patients with hepatitis C decreased alanine transaminase and aspartate aminotransferase levels without changes in viral load.PubMedCrossRefGoogle Scholar
  67. 67.
    Smith RAJ, Murphy MP. Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann N Y Acad Sci. 2010;1201:96–103.PubMedCrossRefGoogle Scholar
  68. 68.
    Albrecht SC, Barata AG, Grosshans J, Teleman AA, Dick TP. In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis. Cell Metab. 2011;14:819–29.PubMedCrossRefGoogle Scholar
  69. 69.
    Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nat Rev Drug Discov. 2010;9:537–50.PubMedCrossRefGoogle Scholar
  70. 70.
    Zhang L, Nguyen MVC, Lardy B, Jesaitis AJ, Grichine A, Rousset F, et al. New insight into the Nox4 subcellular localization in HEK293 cells: first monoclonal antibodies against Nox4. Biochimie. 2011;93:457–68.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Division of Cardiovascular Medicine, Department of MedicineUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations