Current Atherosclerosis Reports

, Volume 14, Issue 5, pp 460–468 | Cite as

Regulation of Atherosclerosis and Associated Risk Factors by Adenosine and Adenosine Receptors

  • Milka Koupenova
  • Hillary Johnston-Cox
  • Katya Ravid
Clinical Trials and Their Interpretations (J Plutzky, Section Editor)

Abstract

Adenosine is an endogenous metabolite that has an anti-inflammatory effect across the vasculature. Extracellular adenosine activates 4 G-protein coupled receptors (A1, A3, A2A, and A2B) whose expression varies in different cells and tissues, including the vasculature and blood cells. Higher levels of adenosine are generated during stress, inflammation, and upon tissue damage. Some of the adenosine receptors (AR), such as the A2BAR, are further up-regulated following such stresses. This review discusses the role of adenosine and adenosine receptors in the development of atherosclerosis and some of the risk factors associated with this pathology. These include adenosine receptor-regulated changes in atherosclerosis, blood pressure, thrombosis, and myocardial infarction. Potential therapeutic applications are reviewed, as well as reasons for phenotypic differences occasionally observed between receptor knockout and pharmacological inhibition via drug administration.

Keywords

Adenosine Adenosine receptors Foam cells Atherosclerosis Myocardial infarction Ischemic preconditioning 

Notes

Acknowledgments

The authors apologize to all whose work they could not cite due to limited space required by the journal. This work was supported by National Heart, Lung, and Blood Institute grant HL93149, and by the Boston Nutrition Obesity Research Center (DK046200) Pilot Grant to Katya Ravid; Milka Koupenova was supported by postdoctoral Training Grant from NIH (HL007224); Hillary A. Johnston-Cox was supported by pre-doctoral Training Grant from NIH (HL007969).

Disclosure

No potential conflicts of interest relevant to this article were reported.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Drury AN, Szent-Gyorgyi A. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol. 1929;68:213–37.PubMedGoogle Scholar
  2. 2.
    • Koupenova M, Johnston-Cox H, Vezeridis A, Gavras H, Yang D, Zannis V, et al. A2b adenosine receptor regulates hyperlipidemia and atherosclerosis. Circulation. 2012;125:354–63. The protective role of the anti-inflammatory A2B adenosine receptor in atherosclerosis is described. Activation of this receptor by a scpecific agonist reduces lesion formation and decreases plasma cholesterol and triglycerides levels while mice are still on high-fat, high-cholesterol diet..PubMedCrossRefGoogle Scholar
  3. 3.
    Yang D, Koupenova M, McCrann DJ, Kopeikina KJ, Kagan HM, Schreiber BM, et al. The A2b adenosine receptor protects against vascular injury. Proc Natl Acad Sci U S A. 2008;105:792–6.PubMedCrossRefGoogle Scholar
  4. 4.
    St Hilaire C, Koupenova M, Carroll SH, Smith BD, Ravid K. TNF-α upregulates the A2B adenosine receptor gene: The role of NAD(P)H oxidase 4. Biochem Biophys Res Commun. 2008;375:292–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Yang D, Zhang Y, Nguyen HG, Koupenova M, Chauhan AK, Makitalo M, et al. The A2B adenosine receptor protects against inflammation and excessive vascular adhesion. J Clin Invest. 2006;116:1913–23.PubMedCrossRefGoogle Scholar
  6. 6.
    Kerbaul F, Benard F, Giorgi R, Youlet B, Carrega L, Zouher I, et al. Adenosine A2A receptor hyperexpression in patients with severe SIRS after cardiopulmonary bypass. J Investig Med. 2008;56:864–71.PubMedGoogle Scholar
  7. 7.
    Delyani JA, Van Wylen DG. Endocardial and epicardial interstitial purines and lactate during graded ischemia. Am J Physiol. 1994;266:H1019–26.PubMedGoogle Scholar
  8. 8.
    Reiss AB, Cronstein BN. Regulation of foam cells by adenosine. Arterioscler Thromb Vasc Biol. 2012;32:879–86.PubMedCrossRefGoogle Scholar
  9. 9.
    Fredholm BB. Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ. 2007;14:1315–23.PubMedCrossRefGoogle Scholar
  10. 10.
    Fredholm BB, Arslan G, Halldner L, Kull B, Schulte G, Wasserman W. Structure and function of adenosine receptors and their genes. Naunyn Schmiedebergs Arch Pharmacol. 2000;362:364–74.PubMedCrossRefGoogle Scholar
  11. 11.
    Moriyama K, Sitkovsky MV. Adenosine A2A receptor is involved in cell surface expression of A2B receptor. J Biol Chem. 2010;285:39271–88.PubMedCrossRefGoogle Scholar
  12. 12.
    Bailey A, Ledent C, Kelly M, Hourani SM, Kitchen I. Changes in spinal delta and kappa opioid systems in mice deficient in the A2A receptor gene. J Neurosci. 2002;22:9210–20.PubMedGoogle Scholar
  13. 13.
    Li AC, Glass CK. The macrophage foam cell as a target for therapeutic intervention. Nat Med. 2002;8:1235–42.PubMedCrossRefGoogle Scholar
  14. 14.
    Li AC, Glass CK. PPAR- and LXR-dependent pathways controlling lipid metabolism and the development of atherosclerosis. J Lipid Res. 2004;45:2161–73.PubMedCrossRefGoogle Scholar
  15. 15.
    Aikawa M, Sugiyama S, Hill CC, Voglic SJ, Rabkin E, Fukumoto Y, et al. Lipid lowering reduces oxidative stress and endothelial cell activation in rabbit atheroma. Circulation. 2002;106:1390–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Stoll G, Bendszus M. Inflammation and atherosclerosis: novel insights into plaque formation and destabilization. Stroke. 2006;37:1923–32.PubMedCrossRefGoogle Scholar
  17. 17.
    Boullier A, Bird DA, Chang MK, Dennis EA, Friedman P, Gillotre-Taylor K, et al. Scavenger receptors, oxidized LDL, and atherosclerosis. Ann N Y Acad Sci. 2001;947:214–22. discussion 22–3.PubMedCrossRefGoogle Scholar
  18. 18.
    Gessi S, Fogli E, Sacchetto V, Merighi S, Varani K, Preti D, et al. Adenosine modulates HIF-1{α}, VEGF, IL-8, and foam cell formation in a human model of hypoxic foam cells. Arterioscler Thromb Vasc Biol. 2010;30:90–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Ohta A, Sitkovsky M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature. 2001;414:916–20.PubMedCrossRefGoogle Scholar
  20. 20.
    Okusa MD, Linden J, Huang L, Rieger JM, Macdonald TL, Huynh LP. A(2A) adenosine receptor-mediated inhibition of renal injury and neutrophil adhesion. Am J Physiol Renal Physiol. 2000;279:F809–18.PubMedGoogle Scholar
  21. 21.
    Lee HT, Xu H, Nasr SH, Schnermann J, Emala CW. A1 adenosine receptor knockout mice exhibit increased renal injury following ischemia and reperfusion. Am J Physiol Renal Physiol. 2004;286:F298–306.PubMedCrossRefGoogle Scholar
  22. 22.
    Hasko G, Kuhel DG, Chen JF, Schwarzschild MA, Deitch EA, Mabley JG, et al. Adenosine inhibits IL-12 and TNF-α production via adenosine A2a receptor-dependent and independent mechanisms. FASEB J. 2000;14:2065–74.PubMedCrossRefGoogle Scholar
  23. 23.
    Bowlin TL, Borcherding DR, Edwards III CK, McWhinney CD. Adenosine A3 receptor agonists inhibit murine macrophage tumor necrosis factor-alpha production in vitro and in vivo. Cell Mol Biol (Noisy-le-grand). 1997;43:345–9.Google Scholar
  24. 24.
    Sajjadi FG, Takabayashi K, Foster AC, Domingo RC, Firestein GS. Inhibition of TNF-alpha expression by adenosine: role of A3 adenosine receptors. J Immunol. 1996;156:3435–42.PubMedGoogle Scholar
  25. 25.
    Salvatore CA, Tilley SL, Latour AM, Fletcher DS, Koller BH, Jacobson MA. Disruption of the A(3) adenosine receptor gene in mice and its effect on stimulated inflammatory cells. J Biol Chem. 2000;275:4429–34.PubMedCrossRefGoogle Scholar
  26. 26.
    Reiss AB, Rahman MM, Chan ES, Montesinos MC, Awadallah NW, Cronstein BN. Adenosine A2A receptor occupancy stimulates expression of proteins involved in reverse cholesterol transport and inhibits foam cell formation in macrophages. J Leukoc Biol. 2004;76:727–34.PubMedCrossRefGoogle Scholar
  27. 27.
    Chen JF, Huang Z, Ma J, Zhu J, Moratalla R, Standaert D, et al. A(2A) adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. J Neurosci. 1999;19:9192–200.PubMedGoogle Scholar
  28. 28.
    • Bingham TC, Fisher EA, Parathath S, Reiss AB, Chan ES, Cronstein BN. A2A adenosine receptor stimulation decreases foam cell formation by enhancing ABCA1-dependent cholesterol efflux. J Leukoc Biol. 2010;87:683–90. This article further supports a potential effect of the A2A adenosine receptor on processes associated with atherosclerosis by affecting foam cell formationthrough regulating cholesterol efflux in macrophages. PubMedCrossRefGoogle Scholar
  29. 29.
    St Hilaire C, Carroll SH, Chen H, Ravid K. Mechanisms of induction of adenosine receptor genes and its functional significance. J Cell Physiol. 2009;218:35–44.PubMedCrossRefGoogle Scholar
  30. 30.
    Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb. 1994;14:133–40.PubMedCrossRefGoogle Scholar
  31. 31.
    Piedrahita JA, Zhang SH, Hagaman JR, Oliver PM, Maeda N. Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc Natl Acad Sci U S A. 1992;89:4471–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Plump AS, Smith JD, Hayek T, Aalto-Setala K, Walsh A, Verstuyft JG, et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell. 1992;71:343–53.PubMedCrossRefGoogle Scholar
  33. 33.
    Marathe S, Choi Y, Leventhal AR, Tabas I. Sphingomyelinase converts lipoproteins from apolipoprotein E knockout mice into potent inducers of macrophage foam cell formation. Arterioscler Thromb Vasc Biol. 2000;20:2607–13.PubMedCrossRefGoogle Scholar
  34. 34.
    Jones MR, Zhao Z, Sullivan CP, Schreiber BM, Stone PJ, Toselli PA, et al. A(3) adenosine receptor deficiency does not influence atherogenesis. J Cell Biochem. 2004;92:1034–43.PubMedCrossRefGoogle Scholar
  35. 35.
    • Wang H, Zhang W, Zhu C, Bucher C, Blazar BR, Zhang C, et al. Inactivation of the adenosine A2A receptor protects apolipoprotein E-deficient mice from atherosclerosis. Arterioscler Thromb Vasc Biol. 2009;29:1046–52. Elimination of the anti-inflammatory A2A adenosine receptor led to a suprising reduction in atherosclerosis, contrary to an expected phenotype based on an effect of this receptor on inflammation, and contrary to the protective effect of this receptor in a restensosis model. PubMedCrossRefGoogle Scholar
  36. 36.
    • Wang H, Zhang W, Tang R, Zhu C, Bucher C, Blazar BR, et al. Adenosine receptor A2A deficiency in leukocytes increases arterial neointima formation in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2010;30:915–22. This study was the first to highlight a role for A2A adenosine receptor in restenosis. PubMedCrossRefGoogle Scholar
  37. 37.
    Chen H, Koupenova M, Yang D, Sume SS, Trackman PC, Ravid K. Regulation of MMP-9 expression by the A2b adenosine receptor and its dependency on TNF-alpha signaling. Exp Hematol. 2011;39:525–30.PubMedCrossRefGoogle Scholar
  38. 38.
    Adair TH. Growth regulation of the vascular system: an emerging role for adenosine. Am J Physiol Regul Integr Comp Physiol. 2005;289:R283–96.PubMedCrossRefGoogle Scholar
  39. 39.
    Ledent C, Vaugeois JM, Schiffmann SN, Pedrazzini T, El Yacoubi M, Vanderhaeghen JJ, et al. Aggressiveness, hypoalgesia, and high blood pressure in mice lacking the adenosine A2a receptor. Nature. 1997;388:674–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Varani K, Portaluppi F, Merighi S, Ongini E, Belardinelli L, Borea PA. Caffeine alters A2A adenosine receptors and their function in human platelets. Circulation. 1999;99:2499–502.PubMedCrossRefGoogle Scholar
  41. 41.
    Yang D, Chen H, Koupenova M, Carroll SH, Eliades A, Freedman JE, et al. A new role for the A2b adenosine receptor in regulating platelet function. J Thromb Haemost. 2010;8:817–27.PubMedCrossRefGoogle Scholar
  42. 42.
    Zhao Z, Makaritsis K, Francis CE, Gavras H, Ravid K. A role for the A3 adenosine receptor in determining tissue levels of cAMP and blood pressure: studies in knock-out mice. Biochim Biophys Acta. 2000;1500:280–90.PubMedCrossRefGoogle Scholar
  43. 43.
    Eltzschig HK, Eckle T. Ischemia and reperfusion–from mechanism to translation. Nat Med. 2011;17:1391–401.PubMedCrossRefGoogle Scholar
  44. 44.
    Ogawa S, Gerlach H, Esposito C, Pasagian-Macaulay A, Brett J, Stern D. Hypoxia modulates the barrier and coagulant function of cultured bovine endothelium. Increased monolayer permeability and induction of procoagulant properties. J Clin Invest. 1990;85:1090–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Ogawa S, Koga S, Kuwabara K, Brett J, Morrow B, Morris SA, et al. Hypoxia-induced increased permeability of endothelial monolayers occurs through lowering of cellular cAMP levels. Am J Physiol. 1992;262:C546–54.PubMedGoogle Scholar
  46. 46.
    Patel RA, Glover DK, Broisat A, Kabul HK, Ruiz M, Goodman NC, et al. Reduction in myocardial infarct size at 48 hours after brief intravenous infusion of ATL-146e, a highly selective adenosine A2A receptor agonist. Am J Physiol Heart Circ Physiol. 2009;297:H637–42.PubMedCrossRefGoogle Scholar
  47. 47.
    Jordan JE, Zhao ZQ, Vinten-Johansen J. The role of neutrophils in myocardial ischemia-reperfusion injury. Cardiovasc Res. 1999;43:860–78.PubMedCrossRefGoogle Scholar
  48. 48.
    Auchampach JA, Gross GJ. Adenosine A1 receptors, KATP channels, and ischemic preconditioning in dogs. Am J Physiol. 1993;264:H1327–36.PubMedGoogle Scholar
  49. 49.
    Ge ZD, Peart JN, Kreckler LM, Wan TC, Jacobson MA, Gross GJ, et al. Cl-IB-MECA [2-chloro-N6-(3-iodobenzyl)adenosine-5'-N-methylcarboxamide]reduces ischemia/reperfusion injury in mice by activating the A3 adenosine receptor. J Pharmacol Exp Ther. 2006;319:1200–10.PubMedCrossRefGoogle Scholar
  50. 50.
    Eckle T, Krahn T, Grenz A, Kohler D, Mittelbronn M, Ledent C, et al. Cardioprotection by ecto-5'-nucleotidase (CD73) and A2B adenosine receptors. Circulation. 2007;115:1581–90.PubMedCrossRefGoogle Scholar
  51. 51.
    Thim T, Hagensen MK, Bentzon JF, Falk E. From vulnerable plaque to atherothrombosis. J Intern Med. 2008;263:506–16.PubMedCrossRefGoogle Scholar
  52. 52.
    Slager CJ, Wentzel JJ, Gijsen FJ, Thury A, van der Wal AC, Schaar JA, et al. The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications. Nat Clin Pract Cardiovasc Med. 2005;2:456–64.PubMedCrossRefGoogle Scholar
  53. 53.
    Biaggioni I. Contrasting excitatory and inhibitory effects of adenosine in blood pressure regulation. Hypertension. 1992;20:457–65.PubMedCrossRefGoogle Scholar
  54. 54.
    Ho WY, Lu PJ, Hsiao M, Hwang HR, Tseng YC, Yen MH, et al. Adenosine modulates cardiovascular functions through activation of extracellular signal-regulated kinases 1 and 2 and endothelial nitric oxide synthase in the nucleus tractus solitarii of rats. Circulation. 2008;117:773–80.PubMedCrossRefGoogle Scholar
  55. 55.
    Shen FM, Su DF. The effect of adenosine on blood pressure variability in sinoaortic denervated rats is mediated by adenosine A2a-Receptor. J Cardiovasc Pharmacol. 2000;36:681–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Feng MG, Navar LG. Afferent arteriolar vasodilator effect of adenosine predominantly involves adenosine A2B receptor activation. Am J Physiol Renal Physiol. 2010;299:F310–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Li J, Fenton RA, Wheeler HB, Powell CC, Peyton BD, Cutler BS, et al. Adenosine A2a receptors increase arterial endothelial cell nitric oxide. J Surg Res. 1998;80:357–64.PubMedCrossRefGoogle Scholar
  58. 58.
    Andersen H, Jaff MG, Hogh D, Vanhoutte P, Hansen PB. Adenosine elicits an eNOS-independent reduction in arterial blood pressure in conscious mice that involves adenosine A2A receptors. Acta Physiol (Oxf). 2011;203:197–207.CrossRefGoogle Scholar
  59. 59.
    Xu Z, Park SS, Mueller RA, Bagnell RC, Patterson C, Boysen PG. Adenosine produces nitric oxide and prevents mitochondrial oxidant damage in rat cardiomyocytes. Cardiovasc Res. 2005;65:803–12.PubMedCrossRefGoogle Scholar
  60. 60.
    Yang JN, Chen JF, Fredholm BB. Physiological roles of A1 and A2A adenosine receptors in regulating heart rate, body temperature, and locomotion as revealed using knockout mice and caffeine. Am J Physiol Heart Circ Physiol. 2009;296:H1141–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Giaime P, Carrega L, Fenouillet E, Mercier L, Gerolami V, Ruf J, et al. Relationship between A2A adenosine receptor expression and intradialytic hypotension during hemodialysis. J Investig Med. 2006;54:473–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Sun D, Samuelson LC, Yang T, Huang Y, Paliege A, Saunders T, et al. Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors. Proc Natl Acad Sci U S A. 2001;98:9983–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Belardinelli L, Lerman BB. Electrophysiological basis for the use of adenosine in the diagnosis and treatment of cardiac arrhythmias. Br Heart J. 1990;63:3–4.PubMedCrossRefGoogle Scholar
  64. 64.
    Brown RD, Thoren P, Steege A, Mrowka R, Sallstrom J, Skott O, et al. Influence of the adenosine A1 receptor on blood pressure regulation and renin release. Am J Physiol Regul Integr Comp Physiol. 2006;290:R1324–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Johansson B, Halldner L, Dunwiddie TV, Masino SA, Poelchen W, Gimenez-Llort L, et al. Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc Natl Acad Sci U S A. 2001;98:9407–12.PubMedCrossRefGoogle Scholar
  66. 66.
    Gao X, Patzak A, Sendeski M, Scheffer PG, Teerlink T, Sallstrom J, et al. Adenosine A-receptor deficiency diminishes afferent arteriolar and blood pressure responses during nitric oxide inhibition and angiotensin II treatment. Am J Physiol Regul Integr Comp Physiol. 2011;301:R1669–81.PubMedCrossRefGoogle Scholar
  67. 67.
    Feldman AM, Cheksis-Feiner E, Hamad E, Chan T. Adenosine receptor subtypes and the heart failure phenotype: translating lessons from mice to man. Trans Am Clin Climatol Assoc. 2011;122:198–214.PubMedGoogle Scholar
  68. 68.
    Tang Z, Diamond MA, Chen JM, Holly TA, Bonow RO, Dasgupta A, et al. Polymorphisms in adenosine receptor genes are associated with infarct size in patients with ischemic cardiomyopathy. Clin Pharmacol Ther. 2007;82:435–40.PubMedCrossRefGoogle Scholar
  69. 69.
    Lieu HD, Shryock JC, von Mering GO, Gordi T, Blackburn B, Olmsted AW, et al. Regadenoson, a selective A2A adenosine receptor agonist, causes dose-dependent increases in coronary blood flow velocity in humans. J Nucl Cardiol. 2007;14:514–20.PubMedCrossRefGoogle Scholar
  70. 70.
    Bothe GW, Bolivar VJ, Vedder MJ, Geistfeld JG. Genetic and behavioral differences among 5 inbred mouse strains commonly used in the production of transgenic and knockout mice. Genes Brain Behav. 2004;3:149–57.PubMedCrossRefGoogle Scholar
  71. 71.
    Mekada K, Abe K, Murakami A, Nakamura S, Nakata H, Moriwaki K, et al. Genetic differences among C57BL/6 substrains. Exp Anim. 2009;58:141–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Huang TT, Naeemuddin M, Elchuri S, Yamaguchi M, Kozy HM, Carlson EJ, et al. Genetic modifiers of the phenotype of mice deficient in mitochondrial superoxide dismutase. Hum Mol Genet. 2006;15:1187–94.PubMedCrossRefGoogle Scholar
  73. 73.
    Bryant CD, Zhang NN, Sokoloff G, Fanselow MS, Ennes HS, Palmer AA, et al. Behavioral differences among C57BL/6 substrains: implications for transgenic and knockout studies. J Neurogenet. 2008;22:315–31.PubMedCrossRefGoogle Scholar
  74. 74.
    Liu L, Nutter LM, Law N, McKerlie C. Sperm freezing and in vitro fertilization in 3 substrains of C57BL/6 mice. J Am Assoc Lab Anim Sci. 2009;48:39–43.PubMedGoogle Scholar
  75. 75.
    Moayeri M, Crown D, Newman ZL, Okugawa S, Eckhaus M, Cataisson C, et al. Inflammasome sensor Nlrp1b-dependent resistance to anthrax is mediated by caspase-1, IL-1 signaling and neutrophil recruitment. PLoS Pathog. 2010;6:e1001222.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Milka Koupenova
    • 2
    • 5
  • Hillary Johnston-Cox
    • 3
  • Katya Ravid
    • 1
    • 2
    • 3
    • 4
  1. 1.Boston University School of MedicineBostonUSA
  2. 2.Whitaker Cardiovascular InstituteBoston University School of MedicineBostonUSA
  3. 3.Department of MedicineBoston University School of MedicineBostonUSA
  4. 4.Evans Medical CenterBoston University School of MedicineBostonUSA
  5. 5.Department of MedicineUniversity of Massachusetts School of MedicineWorcesterUSA

Personalised recommendations