Current Atherosclerosis Reports

, Volume 11, Issue 3, pp 188–195 | Cite as

Proteomics of acute coronary syndromes

  • Athanasios Didangelos
  • David Simper
  • Claudia Monaco
  • Manuel Mayr


Acute coronary syndromes (ACS), such as unstable angina, acute myocardial infarction, and sudden cardiac death, are commonly associated with the presence of vulnerable plaques in coronary arteries. Rupture or erosion of vulnerable plaques results in the formation of luminal thrombi due to the physical contact between platelets and thrombogenic elements within the atherosclerotic lesions. Considering the socioeconomic burden of ACS, it is imperative that the scientific community achieves a clear understanding of the multifaceted pathophysiology of vulnerable atheroma to identify accurate prognostic biomarkers and therapeutic targets. The analytical power of modern proteomic technologies could facilitate our understanding of vulnerable plaques and lead to the discovery of novel therapeutic targets and diagnostic biomarkers.


Acute Coronary Syndrome Hyaluronic Acid Atherosclerotic Lesion Plaque Rupture Vulnerable Plaque 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Libby P: Molecular bases of the acute coronary syndromes. Circulation 1995, 91:2844–2850.PubMedGoogle Scholar
  2. 2.
    Kolodgie FD, Virmani R, Burke AP, et al.: Pathologic assessment of the vulnerable human coronary plaque. Heart 2004, 90:1385–1391.CrossRefPubMedGoogle Scholar
  3. 3.
    Virmani R, Burke AP, Farb A, Kolodgie FD: Pathology of the vulnerable plaque. J Am Coll Cardiol 2006, 47:C13–18.CrossRefPubMedGoogle Scholar
  4. 4.
    Libby P: Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 2001, 104:365–372.PubMedGoogle Scholar
  5. 5.
    van der Wal AC, Becker AE, van der Loos CM, Das PK: Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 1994, 89:36–44.PubMedGoogle Scholar
  6. 6.
    Amento EP, Ehsani N, Palmer H, Libby P: Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler Thromb 1991, 11:1223–1230.PubMedGoogle Scholar
  7. 7.
    Schonbeck U, Mach F, Sukhova GK, et al.: Regulation of matrix metalloproteinase expression in human vascular smooth muscle cells by T lymphocytes: a role for CD40 signaling in plaque rupture? Circ Res 1997, 81:448–454.PubMedGoogle Scholar
  8. 8.
    Loppnow H, Werdan K, Buerke M: Vascular cells contribute to atherosclerosis by cytokine- and innateimmunity-related inflammatory mechanisms. Innate Immun 2008, 14:63–87.CrossRefPubMedGoogle Scholar
  9. 9.
    Yan ZQ, Hansson GK: Innate immunity, macrophage activation, and atherosclerosis. Immunol Rev 2007, 219:187–203.CrossRefPubMedGoogle Scholar
  10. 10.
    Galis ZS, Sukhova GK, Lark MW, Libby P: Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 1994, 94:2493–2503.CrossRefPubMedGoogle Scholar
  11. 11.
    Nagase H, Visse R, Murphy G: Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 2006, 69:562–573.CrossRefPubMedGoogle Scholar
  12. 12.
    Mayr M, Mayr U, Chung YL, et al.: Vascular proteomics: linking proteomic and metabolomic changes. Proteomics 2004, 4:3751–3761.CrossRefPubMedGoogle Scholar
  13. 13.
    Martinez-Pinna R, Martin-Ventura JL, Mas S, et al.: Proteomics in atherosclerosis. Curr Atheroscler Rep 2008, 10:209–215.CrossRefPubMedGoogle Scholar
  14. 14.
    Mayr M, Chung YL, Mayr U, et al.: Proteomic and metabolomic analyses of atherosclerotic vessels from apolipoprotein E-deficient mice reveal alterations in inflammation, oxidative stress, and energy metabolism. Arterioscler Thromb Vasc Biol 2005, 25:2135–2142.CrossRefPubMedGoogle Scholar
  15. 15.
    Unlu M, Morgan ME, Minden JS: Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 1997, 18:2071–2077.CrossRefPubMedGoogle Scholar
  16. 16.
    You SA, Archacki SR, Angheloiu G, et al.: Proteomic approach to coronary atherosclerosis shows ferritin light chain as a significant marker: evidence consistent with iron hypothesis in atherosclerosis. Physiol Genomics 2003, 13:25–30.PubMedGoogle Scholar
  17. 17.
    Bagnato C, Thumar J, Mayya V, et al.: Proteomics analysis of human coronary atherosclerotic plaque: a feasibility study of direct tissue proteomics by liquid chromatography and tandem mass spectrometry. Mol Cell Proteomics 2007, 6:1088–1102.CrossRefPubMedGoogle Scholar
  18. 18.
    Martin-Ventura JL, Duran MC, Blanco-Colio LM, et al.: Identification by a differential proteomic approach of heat shock protein 27 as a potential marker of atherosclerosis. Circulation 2004, 110:2216–2219.CrossRefPubMedGoogle Scholar
  19. 19.
    Lepedda AJ, Cigliano A, Cherchi GM, et al.: A proteomic approach to differentiate histologically classified stable and unstable plaques from human carotid arteries. Atherosclerosis 2008 Jul 12 (Epub ahead of print).Google Scholar
  20. 20.
    Mateos-Caceres PJ, Garcia-Mendez A, Lopez Farre A, et al.: Proteomic analysis of plasma from patients during an acute coronary syndrome. J Am Coll Cardiol 2004, 44:1578–1583.CrossRefPubMedGoogle Scholar
  21. 21.
    Eberini I, Gianazza E, Breghi L, et al.: Apolipoprotein A-I breakdown is induced by thrombolysis in coronary patients. Ann Med 2007, 39:306–311.CrossRefPubMedGoogle Scholar
  22. 22.
    Barderas MG, Tunon J, Darde VM, et al.: Circulating human monocytes in the acute coronary syndrome express a characteristic proteomic profile. J Proteome Res 2007, 6:876–886.CrossRefPubMedGoogle Scholar
  23. 23.
    Lewis GD, Wei R, Liu E, et al.: Metabolite profiling of blood from individuals undergoing planned myocardial infarction reveals early markers of myocardial injury. J Clin Invest 2008, 118:3503–3512.CrossRefPubMedGoogle Scholar
  24. 24.
    Simper D, Stalboerger PG, Panetta CJ, et al.: Smooth muscle progenitor cells in human blood. Circulation 2002, 106:1199–1204.CrossRefPubMedGoogle Scholar
  25. 25.
    Hristov M, Zernecke A, Schober A, Weber C: Adult progenitor cells in vascular remodeling during atherosclerosis. Biol Chem 2008, 389:837–844.CrossRefPubMedGoogle Scholar
  26. 26.
    Urbich C, Heeschen C, Aicher A, et al.: Cathepsin L is required for endothelial progenitor cell-induced neovascularization. Nat Med 2005, 11:206–213.CrossRefPubMedGoogle Scholar
  27. 27.
    Pula G, Mayr U, Evans C, et al.: Proteomics identifies thymidine phosphorylase as a key regulator of the angiogenic potential of colony-forming units and endothelial progenitor cell cultures. Circ Res 2009, 104:32–40.CrossRefPubMedGoogle Scholar
  28. 28.
    George J, Afek A, Abashidze A, et al.: Transfer of endothelial progenitor and bone marrow cells influences atherosclerotic plaque size and composition in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 2005, 25:2636–2641.CrossRefPubMedGoogle Scholar
  29. 29.
    Zoll J, Fontaine V, Gourdy P, et al.: Role of human smooth muscle cell progenitors in atherosclerotic plaque development and composition. Cardiovasc Res 2008, 77:471–480.CrossRefPubMedGoogle Scholar
  30. 30.
    Hu Y, Zhang Z, Torsney E, et al.: Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Invest 2004, 113:1258–1265.PubMedGoogle Scholar
  31. 31.
    Mayr M, Zampetaki A, Sidibe A, et al.: Proteomic and metabolomic analysis of smooth muscle cells derived from the arterial media and adventitial progenitors of apolipoprotein E-deficient mice. Circ Res 2008, 102:1046–1056.CrossRefPubMedGoogle Scholar
  32. 32.
    Ross R, Wight TN, Strandness E, Thiele B: Human atherosclerosis. I. Cell constitution and characteristics of advanced lesions of the superficial femoral artery. Am J Pathol 1984, 114:79–93.PubMedGoogle Scholar
  33. 33.
    Plenz GA, Deng MC, Robenek H, Volker W: Vascular collagens: spotlight on the role of type VIII collagen in atherogenesis. Atherosclerosis 2003, 166:1–11.CrossRefPubMedGoogle Scholar
  34. 34.
    Rauterberg J, Jaeger E, Althaus M: Collagens in atherosclerotic vessel wall lesions. Curr Top Pathol 1993, 87:163–192.PubMedGoogle Scholar
  35. 35.
    Plenz G, Dorszewski A, Volker W, et al.: Cholesterol-induced changes of type VIII collagen expression and distribution in carotid arteries of rabbit. Arterioscler Thromb Vasc Biol 1999, 19:2395–2404.PubMedGoogle Scholar
  36. 36.
    Wagner WD: Proteoglycan structure and function as related to atherosclerosis. Ann N Y Acad Sci 1985, 454:52–68.CrossRefPubMedGoogle Scholar
  37. 37.
    Wight TN: Proteoglycans in pathological conditions: atherosclerosis. Fed Proc 1985, 44:381–385.PubMedGoogle Scholar
  38. 38.
    O’Brien KD, Olin KL, Alpers CE, et al.: Comparison of apolipoprotein and proteoglycan deposits in human coronary atherosclerotic plaques: colocalization of biglycan with apolipoproteins. Circulation 1998, 98:519–527.PubMedGoogle Scholar
  39. 39.
    Wagner WD, Edwards IJ, St Clair RW, Barakat H: Low density lipoprotein interaction with artery derived proteoglycan: the influence of LDL particle size and the relationship to atherosclerosis susceptibility. Atherosclerosis 1989, 75:49–59.CrossRefPubMedGoogle Scholar
  40. 40.
    Kolodgie FD, Burke AP, Farb A, et al.: Differential accumulation of proteoglycans and hyaluronan in culprit lesions: insights into plaque erosion. Arterioscler Thromb Vasc Biol 2002, 22:1642–1648.CrossRefPubMedGoogle Scholar
  41. 41.
    Scheibner KA, Lutz MA, Boodoo S, et al.: Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immunol 2006, 177:1272–1281.PubMedGoogle Scholar
  42. 42.
    Okamura Y, Watari M, Jerud ES, et al.: The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem 2001, 276:10229–10233.CrossRefPubMedGoogle Scholar
  43. 43.
    Dollery CM, Libby P: Atherosclerosis and proteinase activation. Cardiovasc Res 2006, 69:625–635.CrossRefPubMedGoogle Scholar
  44. 44.
    Sukhova GK, Schonbeck U, Rabkin E, et al.: Evidence for increased collagenolysis by interstitial collagenases-1 and -3 in vulnerable human atheromatous plaques. Circulation 1999, 99:2503–2509.PubMedGoogle Scholar
  45. 45.
    Brown DL, Hibbs MS, Kearney M, et al.: Identification of 92-kD gelatinase in human coronary atherosclerotic lesions. Association of active enzyme synthesis with unstable angina. Circulation 1995, 91:2125–2131.PubMedGoogle Scholar
  46. 46.
    Galis ZS, Khatri JJ: Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res 2002, 90:251–262.PubMedGoogle Scholar
  47. 47.
    Sukhova GK, Shi GP, Simon DI, et al.: Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J Clin Invest 1998, 102:576–583.CrossRefPubMedGoogle Scholar
  48. 48.
    Halpert I, Sires UI, Roby JD, et al.: Matrilysin is expressed by lipid-laden macrophages at sites of potential rupture in atherosclerotic lesions and localizes to areas of versican deposition, a proteoglycan substrate for the enzyme. Proc Natl Acad Sci U S A 1996, 93:9748–9753.CrossRefPubMedGoogle Scholar
  49. 49.
    Jonsson-Rylander AC, Nilsson T, Fritsche-Danielson R, et al.: Role of ADAMTS-1 in atherosclerosis: remodeling of carotid artery, immunohistochemistry, and proteolysis of versican. Arterioscler Thromb Vasc Biol 2005, 25:180–185.PubMedGoogle Scholar

Copyright information

© Current Medicine Group, LLC 2009

Authors and Affiliations

  • Athanasios Didangelos
  • David Simper
  • Claudia Monaco
  • Manuel Mayr
    • 1
  1. 1.Cardiovascular Division, The James Black Centre, King’s College London School of MedicineKing’s College LondonLondonUK

Personalised recommendations