Niacin: An old drug rejuvenated

  • Vaijinath S. Kamanna
  • Shobha H. Ganji
  • Moti L. Kashyap
Article

Abstract

Niacin has long been used in the treatment of dyslipidemia and cardiovascular disease. Recent research on niacin has been focused on understanding the mechanism of action of niacin and preparation of safer niacin formulations. New findings indicate that niacin does the following: 1) it inhibits hepatic diacylglycerol acyltransferase 2, resulting in inhibition of triglyceride synthesis and decreased apolipoprotein B-containing lipoproteins; 2) it decreases the surface expression of hepatic adenosine triphosphate synthase β-chain, leading to decreased holoparticle high-density lipoprotein catabolism and increased high-density lipoprotein levels; and 3) it increases redox potential in arterial endothelial cells, resulting in inhibition of redox-sensitive genes. Flushing, an adverse effect of niacin, results from niacin receptor GPR109A-mediated production of prostaglandin D2 and E2 via DP1 and EP2/4 receptors. DP1 receptor antagonist (laropiprant) attenuates the niacin flush. A reformulated preparation of extended-release niacin (Niaspan; Abbott, Abbott Park, IL) lowers flushing compared with an older Niaspan formulation. These advancements in niacin research have rejuvenated its use for the treatment of dyslipidemia and cardiovascular disease.

References and Recommended Reading

  1. 1.
    Altschul R, Hoffer A, Stephen JD: Influence of nicotinic acid on serum cholesterol in man. Arch Biochem Biophys 1955, 54:558–559.CrossRefGoogle Scholar
  2. 2.
    Meyers CD, Kamanna VS, Kashyap ML: Niacin therapy in atherosclerosis. Curr Opin Lipidol 2004, 15:659–665.PubMedCrossRefGoogle Scholar
  3. 3.
    Carlson LA: Nicotinic acid: the broad-spectrum lipid drug. A 50th anniversary review. J Intern Med 2005, 258:94–114.PubMedCrossRefGoogle Scholar
  4. 4.
    Ganji SH, Zhang LH, Kamanna VS, Kashyap ML: Effect of niacin on lipoproteins and atherosclerosis. Future Lipidol 2006, 1:549–557.CrossRefGoogle Scholar
  5. 5.
    Morgan JM, Capuzzi DM, Baksh RI: Effects of extended-release niacin on lipoprotein subclass distribution. Am J Cardiol 2003, 91:1432–1436.PubMedCrossRefGoogle Scholar
  6. 6.
    Zambon A, Hokanson JE, Brown BG, et al.: Evidence for a new pathophysiological mechanism for coronary artery disease regression: hepatic lipase-mediated changes in LDL density. Circulation 1999, 99:1959–1964.PubMedGoogle Scholar
  7. 7.
    Backes JM, Gibson CA: Effect of lipid lowering drug therapy on small-dense low-density lipoprotein. Ann Pharmacother 2005, 39:523–526.PubMedCrossRefGoogle Scholar
  8. 8.
    McKenney JM, McCormick LS, Schaefer EJ, et al.: Effect of niacin and atrovastatin on lipoprotein subclasses in patients with atherogenic dyslipidemia. Am J Cardiol 2001, 88:270–274.PubMedCrossRefGoogle Scholar
  9. 9.
    Wahlberg G, Walldius G, Olsson AG, et al.: Effect of nicotinic acid on serum cholesterol concentrations of high density lipoprotein subfractions HDL2 and HDL3 in hyperlipoproteinaemia. J Intern Med 1990, 228:151–157.PubMedCrossRefGoogle Scholar
  10. 10.
    Shepherd J, Betteridge J, Van Gaal L, European Consensus Panel: Nicotinic acid in the management of dyslipidemia associated with diabetes and metabolic syndrome: a position paper developed by a European Consensus Panel. Curr Med Res Opin 2005, 21:665–682.PubMedCrossRefGoogle Scholar
  11. 11.
    Sakai T, Kamanna VS, Kashyap ML: Niacin but not gemfibrozil, selectively increases LP-AI, a cardioprotective subfraction of HDL, in patients with low HDL cholesterol. Arterioscler Thromb Vasc Biol 2001, 21:1783–1789.PubMedCrossRefGoogle Scholar
  12. 12.
    Brown BG, Zhao XQ, Chait A, et al.: Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N Engl J Med 2001, 345:1583–1592.PubMedCrossRefGoogle Scholar
  13. 13.
    Taylor AJ, Sullenberger LE, Lee HJ, et al.: Arterial biology for the investigation of the treatment effects of reducing cholesterol (ARBITER)2. Circulation 2004, 110:3512–3517.PubMedCrossRefGoogle Scholar
  14. 14.
    Said HM, Nabokina SM, Balamurgan K, et al.: Mechanism of nicotinic acid transport in human liver cells: experiments with HepG2 cells and primary hepatocytes. Am J Physiol Cell Physiol 2007, 293:C1773–C1778.PubMedCrossRefGoogle Scholar
  15. 15.
    Nabokina SM, Kashyap ML, Said HM: Mechanism and regulation of human intestinal niacin uptake. Am J Physiol Cell Physiol 2005, 289:C97–C103.PubMedCrossRefGoogle Scholar
  16. 16.
    Ginsberg HN: Synthesis and secretion of apolipoprotein B from cultured liver cells. Curr Opin Lipidol 1995, 6:275–280.PubMedCrossRefGoogle Scholar
  17. 17.
    Davis RA: Cell and molecular biology of the assembly and secretion of apolipoprotein B-containing lipoproteins by the liver. Biochim Biophys Acta 1999, 1440:1–31.PubMedGoogle Scholar
  18. 18.
    Grundy SM, Mok HY, Zech L, et al.: Influence of nicotinic acid on metabolism of cholesterol and triglycerides in man. J Lipid Res 1981, 22:24–36.PubMedGoogle Scholar
  19. 19.
    Jin FY, Kamanna VS, Kashyap ML: Niacin accelerates intracellular apo B degradaqtion by inhibiting triacylglycerol synthesis in human hepatoblastoma (Hep G2) cells. Arterioscler Thromb Vasc Biol 1999, 19:1051–1059.PubMedGoogle Scholar
  20. 20.
    Ganji SH, Tavintharan S, Zhu D, et al.: Niacin noncompetitively inhibits DGAT2 but not DGAT1 activity in HepG2 cells. J Lipid Res 2004, 45:1835–1845.PubMedCrossRefGoogle Scholar
  21. 21.
    Carlson LA, Oro L: The effect of nicotinic acid on the plasma free fatty acids. Acta Med Scand 1962, 172:641–645.PubMedGoogle Scholar
  22. 22.
    Carlson LA: Studies on the effect of nicotinic acid on catecholamine stimulated lipolysis in adipose tissue in vitro. Acta Med Scand 1963, 173:719–722.PubMedGoogle Scholar
  23. 23.
    Lai E, Waters G, Tata J, et al.: A niacin receptor partial agonist, MK-0354, robustly reduces plasma free fatty acids and produces little flushing but fails to alter LDL-C, HDL-C, and triglycerides in humans. Circulation 2007, 116:II–16A.Google Scholar
  24. 24.
    Yu XX, Murray SF, Pandey SK, et al.: Antisense oligonucleotide reduction of DGAT2 expression improves hepatic steatosis and hyperlipidemia in obese mice. Hepatology 2005, 42:362–371.PubMedCrossRefGoogle Scholar
  25. 25.
    Blum CB, Levy RI, Eisenberg S, et al.: High density lipoprotein metabolism in man. J Clin Invest 1977, 60:795–807.PubMedCrossRefGoogle Scholar
  26. 26.
    Shepherd J, Packard CJ, Patsch JR, et al.: Effect of nicotinic acid therapy on plasma high density lipoprotein subfraction distribution and composition and on apolipoprotein A metabolism, J Clin Invest 1979, 63:858–867.PubMedCrossRefGoogle Scholar
  27. 27.
    Jin FY, Kamanna VS, Kashyap ML: Niacin decreases removal of high density lipoprotein apolipoprotein A-I but not cholesterol ester by Hep G2 cells. Implications for reverse cholesterol transport. Arterioscler Thromb Vasc Biol 1997, 17:2020–2028.PubMedGoogle Scholar
  28. 28.
    Acton S, Riggoti A, Landschutz KT, et al.: Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 1996, 271:518–520.PubMedCrossRefGoogle Scholar
  29. 29.
    Martinez LO, Jacquet S, Esteve JP, et al.: Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature 2003, 421:75–79.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhang LH, Kamanna VS, Zhang MC, Kashyap ML: Niacin inhibits surface expression of beta chain ATP synthase in HepG2 cells. Implications for rasing HDL. J Lipid Res 2008, 49:1195–1201.PubMedCrossRefGoogle Scholar
  31. 31.
    Rubic T, Trottmann M, Lorenz RL: Stimulation of CD36 and the key effector of reverse cholesterol transport ATP-binding cassette A1 in monocytoid cells by niacin. Biochem Pharmacol 2004, 67:411–419.PubMedCrossRefGoogle Scholar
  32. 32.
    Tunaru S, Kero J, Schaub A, et al.: PUMA-G and HM74 are receptor for nicotinic acid and mediate its anti-lipolytic effect. Nat Med 2003, 9:352–355.PubMedCrossRefGoogle Scholar
  33. 33.
    Wise A, Foord SM, Fraser NJ, et al.: Molecular identification of high and low affinity receptors for nicotinic acid. J Biol Chem 2003, 278:9869–9874.PubMedCrossRefGoogle Scholar
  34. 34.
    Soga T, Kamohara M, Takasaki J, et al.: Molecular identification of nicotinic acid receptor. Biochem Biophys Res Commun 2003, 303:364–369.PubMedCrossRefGoogle Scholar
  35. 35.
    Morrow JD, Parsons WG 3rd, Roberts LJ 2nd.: Release of markedly increased quantities of prostaglandin D2 in vivo in humans following the administration of nicotinic acid. Prostaglandins 1989, 38:263–274.PubMedCrossRefGoogle Scholar
  36. 36.
    Benyo Z, Gille A, Bennett CL, et al.: Nicotinic acid-induced flushing is mediated by activation of epidermal Langerhans cells. Mol Pharmacol 2006, 70:1844–1849.PubMedCrossRefGoogle Scholar
  37. 37.
    Maciejewski-Lenoir D, Richman JG, Hakak Y, et al.: Langerhans cells release prostaglandin D2 in response to nicotinic acid. J Invest Dermatol 2006, 126:2637–2646.PubMedCrossRefGoogle Scholar
  38. 38.
    Meyers CD, Liu P, Kamanna VS, Kashyap ML: Nicotinic acid induces secretion of prostaglandin D2 in human macrophages: an in vitro model of the niacin flush. Atherosclerosis 2007, 192:253–258.PubMedCrossRefGoogle Scholar
  39. 39.
    Benyo Z, Gille A, Kero J, et al.: GPR109A (PUMA-G/HM74A) mediates nicotinic acid-induced flushing. J Clin Invest 2005, 115:3634–3640.PubMedCrossRefGoogle Scholar
  40. 40.
    Cheng K, Wu TJ, Sturino C, et al.: Antagonism of the prostaglandin D2 receptor 1 suppresses nicotinic acid-induced vasodilation in mice and humans. Proc Natl Acad Sci U S A 2006, 103:6682–6687.PubMedCrossRefGoogle Scholar
  41. 41.
    Jacobson EL, Jacobson MK: A biomarker for the assessment of niacin nutriture as a potential preventive factor in carcinogenesis. J Intern Med 1993, 233:59–62.PubMedGoogle Scholar
  42. 42.
    Yan Q, Briehl M, Crowley CL, et al.: The NAD+ precursors, nicotinic acid and nicotinamide upregulate glyceraldehydes-3-phosphate dehydrogenase and glucose-6-phosphate dehydrogenase mRNA in Jurkat cells. Biochem Biophys Res Commun 1999, 255:133–136.PubMedCrossRefGoogle Scholar
  43. 43.
    Ganji SH, Qin S, Zhang L, et al.: Niacin inhibits vascular oxidative stress, redox-sensitive genes, and monocyte adhesion to human aortic endothelial cells. Atherosclerosis 2008 (in press)Google Scholar
  44. 44.
    Vaccari CS, Hammoud RA, Nagamia SH, et al.: Revisiting niacin: reviewing the evidence. J Clin Lipidol 2007, 1:248–255.CrossRefGoogle Scholar
  45. 45.
    Cefali EA, Simmons PD, Stanek EJ, et al.: Improved control of niacin-induced flushing using an optimized once-daily, extended-release niacin formulation. Int J Clin Pharmacol Ther 2006, 44:633–640.PubMedGoogle Scholar
  46. 46.
    Cefali EA, Simmons PD, Stanek EJ, et al.: Aspirin reduces cutaneous flushing after administration of an optimized extended-released niacin formulation. Int J Clin Pharmacol Ther 2007, 45:78–88.PubMedGoogle Scholar
  47. 47.
    Cheng K, Wu T, Wu KK, et al.: Antagonism of the prostaglandin D2 receptor1 supresses nicotinic acid-induced vasodilation in mice and humans. Proc Natl Acad Sci U S A 2006, 103:6682–6687.PubMedCrossRefGoogle Scholar
  48. 48.
    Lai E, DeLepepeire I, Crumley TM, et al.: Suppression of niacin-induced vasodilation with an antagonist to prostaglandin D2 receptor subtype 1. Clin Pharmacol Ther 2007, 81:849–857.PubMedCrossRefGoogle Scholar
  49. 49.
    MacCubin D, Sirah W, Betteridge A, et al.: Flushing profile of ER niacin/laropiprant in patients with primary hypercholesterolemia or mixed dyslipidemia. Poster presented at: 2007 AHA Scientific Sessions; November 4–7, 2007; Orlando, FL.Google Scholar

Copyright information

© Current Medicine Group LLC 2009

Authors and Affiliations

  • Vaijinath S. Kamanna
  • Shobha H. Ganji
  • Moti L. Kashyap
    • 1
  1. 1.Department of Veterans Affairs Healthcare SystemAtherosclerosis Research CenterLong BeachUSA

Personalised recommendations