Current Atherosclerosis Reports

, Volume 8, Issue 3, pp 206–215 | Cite as

Genetic determinants of carotid ultrasound traits


Atherosclerosis is a complex disease with various intermediate phenotypes that are themselves complex and influenced by many factors. Through the use of carotid ultrasound techniques, the intermediate stages of vascular disease can be imaged and studied for association with potential genetic determinants. In this article we review the most recent available data (reports published since 2004) on the genetic determinants of atherosclerosis, as measured by one-, two-, and three-dimensional ultrasonography of the carotid arteries. In general, associations are disparate and modest. For intima-media thickness, promising associations have been found for both TNFRSFIA R92Q and PPARG P12A, but associations also differed in the same individuals depending on the specific ultrasound trait studied (eg, linear intima-media thickness versus total plaque volume in carotid arteries). Some of the challenging issues for future studies include accounting for gene-environment interactions, sex-specific associations, and the distinctiveness of different carotid ultrasound measures.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Lusis AJ: Atherosclerosis. Nature 2000, 407:233–241.PubMedCrossRefGoogle Scholar
  2. 2.
    Zannad F, Benetos A: Genetics of intima-media thickness. Curr Opin Lipidol 2003, 14:191–200.PubMedCrossRefGoogle Scholar
  3. 3.
    Al-Shali K, House AA, Hanley AJ, et al.: Differences between carotid wall morphological phenotypes measured by ultrasound in one, two and three dimensions. Atherosclerosis 2005, 178:319–325.PubMedCrossRefGoogle Scholar
  4. 4.
    Spence JD, Hegele RA: Noninvasive phenotypes of atherosclerosis: similar windows but different views. Stroke 2004, 35:649–653.PubMedCrossRefGoogle Scholar
  5. 5.
    Manolio TA, Boerwinkle E, O’Donnell CJ, Wilson AF: Genetics of ultrasonographic carotid atherosclerosis. Arterioscler Thromb Vasc Biol 2004, 24:1567–1577.PubMedCrossRefGoogle Scholar
  6. 6.
    Al-Shali KZ, House AA, Hanley AJ, et al.: Genetic variation in PPARG encoding peroxisome proliferator-activated receptor gamma associated with carotid atherosclerosis. Stroke 2004, 35:2036–2040.PubMedCrossRefGoogle Scholar
  7. 7.
    Brandstrom H, Stiger F, Kahan T, et al.: A single nucleotide polymorphism in the promoter region of the osteoprotegerin gene is related to intima-media thickness of the carotid artery in hypertensive patients. The Swedish Irbesartan Left Ventricular Hypertrophy Investigation vs Atenolol (SILVHIA). Blood Press 2004, 13:152–157.PubMedCrossRefGoogle Scholar
  8. 8.
    Dwyer JH, Allayee H, Dwyer KM, et al.: Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis. N Engl J Med 2004, 350:29–37.PubMedCrossRefGoogle Scholar
  9. 9.
    Fox CS, Cupples LA, Chazaro I, et al.: Genomewide linkage analysis for internal carotid artery intimal medial thickness: evidence for linkage to chromosome 12. Am J Hum Genet 2004, 74:253–261.PubMedCrossRefGoogle Scholar
  10. 10.
    Gaukrodger N, Mayosi BM, Imrie H, et al.: A rare variant of the leptin gene has large effects on blood pressure and carotid intima-medial thickness: a study of 1428 individuals in 248 families. J Med Genet 2005, 42:474–478.PubMedCrossRefGoogle Scholar
  11. 11.
    Hamanishi T, Furuta H, Kato H, et al.: Functional variants in the glutathione peroxidase-1 (GPx-1) gene are associated with increased intima-media thickness of carotid arteries and risk of macrovascular diseases in Japanese type 2 diabetic patients. Diabetes 2004, 53:2455–2460.PubMedCrossRefGoogle Scholar
  12. 12.
    Kammerer CM, Dualan AA, Samollow PB, et al.: Bone mineral density, carotid artery intimal medial thickness, and the vitamin D receptor BsmI polymorphism in Mexican American women. Calcif Tissue Int 2004, 75:292–298.PubMedCrossRefGoogle Scholar
  13. 13.
    Miwa Y, Takiuchi S, Kamide K, et al.: Identification of gene polymorphism in lipocalin-type prostaglandin D synthase and its association with carotid atherosclerosis in Japanese hypertensive patients. Biochem Biophys Res Commun 2004, 322:428–433.PubMedCrossRefGoogle Scholar
  14. 14.
    Miwa Y, Takiuchi S, Kamide K, et al.: Insertion/deletion polymorphism in clusterin gene influences serum lipid levels and carotid intima-media thickness in hypertensive Japanese females. Biochem Biophys Res Commun 2005, 331:1587–1593.PubMedCrossRefGoogle Scholar
  15. 15.
    Oberkofler H, Iglseder B, Klein K, et al.: Associations of the UCP2 gene locus with asymptomatic carotid atherosclerosis in middle-aged women. Arterioscler Thromb Vasc Biol 2005, 25:604–610.PubMedCrossRefGoogle Scholar
  16. 16.
    Poirier O, Nicaud V, Gariepy J, et al.: Polymorphism R92Q of the tumour necrosis factor receptor 1 gene is associated with myocardial infarction and carotid intima-media thickness—the ECTIM, AXA, EVA and GENIC Studies. Eur J Hum Genet 2004, 12:213–219.PubMedCrossRefGoogle Scholar
  17. 17.
    Sposito AC, Gonbert S, Turpin G, et al.: Common promoter C516T polymorphism in the ApoB gene is an independent predictor of carotid atherosclerotic disease in subjects presenting a broad range of plasma cholesterol levels. Arterioscler Thromb Vasc Biol 2004, 24:2192–2195.PubMedCrossRefGoogle Scholar
  18. 18.
    Temelkova-Kurktschiev T, Hanefeld M, Chinetti G, et al.: Ala12Ala genotype of the peroxisome proliferator-activated receptor gamma2 protects against atherosclerosis. J Clin Endocrinol Metab 2004, 89:4238–4242.PubMedCrossRefGoogle Scholar
  19. 19.
    Wolff B: A functional serotonin transporter (SLC6A4) polymorphism modifies the association of smoking and diabetes with asymptomatic carotid atherosclerosis. Thromb Haemost 2005, 93:180–182.PubMedGoogle Scholar
  20. 20.
    Yamamoto I, Fujitsu J, Nohnen S, et al.: Association of plasma PAF acetylhydrolase gene polymorphism with IMT of carotid arteries in Japanese type 2 diabetic patients. Diabetes Res Clin Pract 2003, 59:219–224.PubMedCrossRefGoogle Scholar
  21. 21.
    Yan ZC, Zhu ZM, Shen CY, et al.: Peroxisome proliferator-activated receptor gamma C-161T polymorphism and carotid artery atherosclerosis in metabolic syndrome. Zhonghua Yi Xue Za Zhi 2004, 84:543–547.PubMedGoogle Scholar
  22. 22.
    Islam MS, Raitakari OT, Juonala M, et al.: Apolipoprotein A-I/C-III/A-IV SstI and apolipoprotein B XbaI polymorphisms and their association with carotid artery intima-media thickness in the Finnish population. The Cardiovascular Risk in Young Finns Study. Atherosclerosis 2005, 180:79–86.PubMedCrossRefGoogle Scholar
  23. 23.
    Park JH, El-Sohemy A, Cornelis MC, et al.: Glutathione S-transferase M1, T1, and P1 gene polymorphisms and carotid atherosclerosis in Korean patients with rheumatoid arthritis. Rheumatol Int 2004, 24:157–163.PubMedCrossRefGoogle Scholar
  24. 24.
    Jerrard-Dunne P, Sitzer M, Risley P, et al.: Inflammatory gene load is associated with enhanced inflammation and early carotid atherosclerosis in smokers. Stroke 2004, 35:2438–2443.PubMedCrossRefGoogle Scholar
  25. 25.
    Nomiyama T, Tanaka Y, Piao L, et al.: Accumulation of somatic mutation in mitochondrial DNA and atherosclerosis in diabetic patients. Ann N Y Acad Sci 2004, 1011:193–204.PubMedCrossRefGoogle Scholar
  26. 26.
    Srinivasan SR, Li S, Chen W, et al.: Q192R polymorphism of the paraoxanase 1 gene and its association with serum lipoprotein variables and carotid artery intima-media thickness in young adults from a biracial community. The Bogalusa Heart Study. Atherosclerosis 2004, 177:167–174.PubMedGoogle Scholar
  27. 27.
    Sayed-Tabatabaei FA, Schut AF, Hofman A, et al.: A study of gene-environment interaction on the gene for angiotensin converting enzyme: a combined functional and population based approach. J Med Genet 2004, 41:99–103.PubMedCrossRefGoogle Scholar
  28. 28.
    Zhang S, Day I, Ye S: Nicotine induced changes in gene expression by human coronary artery endothelial cells. Atherosclerosis 2001, 154:277–283.PubMedCrossRefGoogle Scholar
  29. 29.
    Florez JC: Phenotypic consequences of the peroxisome proliferator-activated receptor-gamma Pro12Ala polymorphism: the weight of the evidence in genetic association studies. J Clin Endocrinol Metab 2004, 89:4234–4237.PubMedCrossRefGoogle Scholar
  30. 30.
    Bednarska-Makaruk M, Rodo M, Markuszewski C, et al.: Polymorphisms of apolipoprotein e and angiotensin-converting enzyme genes and carotid atherosclerosis in heavy drinkers. Alcohol 2005, 40:274–282.Google Scholar
  31. 31.
    Li SJ, Sun NL, Zhou SM: Carotid remodeling of hypertensive subjects and polymorphism of the angiotensin-converting enzyme gene. Chin Med J (Engl) 2004, 117:49–53.Google Scholar
  32. 32.
    Pall D, Settakis G, Katona E, et al.: Angiotensin-converting enzyme gene polymorphism, carotid intima-media thickness, and left ventricular mass index in adolescent hypertension. J Clin Ultrasound 2004, 32:129–135.PubMedCrossRefGoogle Scholar
  33. 33.
    Varda NM, Peterlin B, Bradac SU, Gregoric A: Carotid artery intima-media thickness and angiotensin-converting enzyme gene polymorphism in the offspring of parents with premature stroke. Acta Paediatr 2005, 94:33–37.PubMedCrossRefGoogle Scholar
  34. 34.
    Fernandez-Miranda C, Aranda JL, Martin MA, et al.: Apolipoprotein E polymorphism and carotid atherosclerosis in patients with coronary disease. Int J Cardiol 2004, 94:209–212.PubMedCrossRefGoogle Scholar
  35. 35.
    Kahraman S, Kiykim AA, Altun B, et al.: Apolipoprotein E gene polymorphism in renal transplant recipients: effects on lipid metabolism, atherosclerosis and allograft function. Clin Transplant 2004, 18:288–294.PubMedCrossRefGoogle Scholar
  36. 36.
    Durga J, Bots ML, Schouten EG, et al.: Low concentrations of folate, not hyperhomocysteinemia, are associated with carotid intima-media thickness. Atherosclerosis 2005, 179:285–292.PubMedCrossRefGoogle Scholar
  37. 37.
    Kelemen LE, Anand SS, Hegele RA, et al.: Associations of plasma homocysteine and the methylenetetrahydrofolate reductase C677T polymorphism with carotid intima media thickness among South Asian, Chinese and European Canadians. Atherosclerosis 2004, 176:361–370.PubMedCrossRefGoogle Scholar
  38. 38.
    Samnegard A, Silveira A, Lundman P, et al.: Serum matrix metalloproteinase-3 concentration is influenced by MMP-3 −1612 5A/6A promoter genotype and associated with myocardial infarction. J Intern Med 2005, 258:411–419.PubMedCrossRefGoogle Scholar
  39. 39.
    Zhou X, Huang J, Chen J, et al.: Haplotype analysis of the matrix metalloproteinase 3 gene and myocardial infarction in a Chinese Han population. The Beijing atherosclerosis study. Thromb Haemost 2004, 92:867–873.PubMedGoogle Scholar
  40. 40.
    Campo S, Sardo MA, Trimarchi G, et al.: The paraoxonase promoter polymorphism (-107)T>C is not associated with carotid intima-media thickness in Sicilian hypercholesterolemic patients. Clin Biochem 2004, 37:388–394.PubMedCrossRefGoogle Scholar
  41. 41.
    Karvonen J, Kauma H, Paivansalo M, Kesaniemi YA: Paraoxonase-1 gene Leu-Met55 and Gln-Arg192 polymorphisms are not associated with carotid artery atherosclerosis in a population-based cohort. Eur J Cardiovasc Prev Rehabil 2004, 11:511–512.PubMedCrossRefGoogle Scholar
  42. 42.
    Roest M, Jansen AC, Barendrecht A, et al.: Variation at the paraoxonase gene locus contributes to carotid arterial wall thickness in subjects with familial hypercholesterolemia. Clin Biochem 2005, 38:123–127.PubMedCrossRefGoogle Scholar
  43. 43.
    Van Himbergen T, Roest M, De Waart F, et al.: Paraoxonase genotype, LDL-oxidation and carotid atherosclerosis in male life-long smokers. Free Radic Res 2004, 38:553–560.PubMedCrossRefGoogle Scholar
  44. 44.
    Hegele RA, Al-Shali KZ, Khan HM, et al.: Carotid ultrasound in one, two and three dimensions. Vasc Dis Prevention 2005, 2:87–92.CrossRefGoogle Scholar
  45. 45.
    Fujii K, Abe I, Ohya Y, et al.: Risk factors for the progression of early carotid atherosclerosis in a male working population. Hypertens Res 2003, 26:465–471.PubMedCrossRefGoogle Scholar
  46. 46.
    Spence JD: Advances in atherosclerosis. Baillieres Clin Neurol 1995, 4:191–205.PubMedGoogle Scholar
  47. 47.
    Pollex RL, Spence JD, House AA, et al.: A comparison of ultrasound measurements to assess carotid atherosclerosis development in subjects with and without type 2 diabetes. Cardiovasc Ultrasound 2005, 3:15.PubMedCrossRefGoogle Scholar
  48. 48.
    Hegele RA, Al-Shali KZ, House AA, et al.: Disparate associations of a functional promoter polymorphism in PCK1 with carotid wall ultrasound traits. Stroke 2005, In press.Google Scholar
  49. 49.
    Spence JD, Ban MR, Hegele RA: Lipoprotein lipase (LPL) gene variation and progression of carotid artery plaque. Stroke 2003, 34:1176–1180.PubMedCrossRefGoogle Scholar
  50. 50.
    Hegele RA, Ban MR, Anderson CM, Spence JD: Infection-susceptibility alleles of mannose-binding lectin are associated with increased carotid plaque area. J Invest Med 2000, 48:198–202.Google Scholar
  51. 51.
    Spence JD, Malinow MR, Barnett PA, et al.: Plasma homocyst(e)ine concentration, but not MTHFR genotype, is associated with variation in carotid plaque area. Stroke 1999, 30:969–973.PubMedGoogle Scholar
  52. 52.
    Marques-Vidal P, Bal Dit Sollier C, Drouet L, et al.: Lack of association between ADH3 polymorphism, alcohol intake, risk factors and carotid intima-media thickness. Atherosclerosis 2005, In press.Google Scholar
  53. 53.
    Terajima S, Waga C, Yoshihara E, Iwahashi K: Relationship between of carotid ultrasonography in Japanese hypertensive subjects for intima-media thickness and plaque, and candidate gene polymorphism-possibility of early detection of arteriosclerotic disease. Rinsho Byori 2005, 53:290–296.PubMedGoogle Scholar
  54. 54.
    Chen X, Tian H, Liu R: Association of serum apolipoprotein C III levels and apolipoprotein C III gene Sst I polymorphism with carotid intima-media thickness in Chinese type 2 diabetic patients. Diabetes Res Clin Pract 2004, 66:41–47.PubMedCrossRefGoogle Scholar
  55. 55.
    Hung J, McQuillan BM, Chapman CM, et al.: Promoter polymorphism of the gene for CD14 receptor is not associated with sub-clinical carotid atherosclerosis in a community population. Eur J Cardiovasc Prev Rehabil 2004, 11:344–349.PubMedCrossRefGoogle Scholar
  56. 56.
    Amar J, Ruidavets JB, Bal dit Sollier C, et al.: CD14 C(-260)T gene polymorphism, circulating soluble CD14 levels and arteriosclerosis. J Hypertens 2004, 22:1523–1528.PubMedCrossRefGoogle Scholar
  57. 57.
    Paradossi U, Ciofini E, Clerico A, et al.: Endothelial function and carotid intima-media thickness in young healthy subjects among endothelial nitric oxide synthase Glu298->Asp and T-786->C polymorphisms. Stroke 2004, 35:1305–1309.PubMedCrossRefGoogle Scholar
  58. 58.
    Fox CS, Larson MG, Corey D, et al.: Absence of association between polymorphisms in the hemostatic factor pathway genes and carotid intimal medial thickness: the Framingham Heart Study. Stroke 2004, 35:e65-e67.PubMedCrossRefGoogle Scholar
  59. 59.
    Cakir B, Heiss G, Pankow JS, et al.: Association of the Lewis genotype with cardiovascular risk factors and subclinical carotid atherosclerosis: the Atherosclerosis Risk in Communities (ARIC) study. J Intern Med 2004, 255:40–51.PubMedCrossRefGoogle Scholar
  60. 60.
    Campo S, Sardo MA, Bitto A, et al.: Platelet-activating factor acetylhydrolase is not associated with carotid intima-media thickness in hypercholesterolemic Sicilian individuals. Clin Chem 2004, 50:2077–2082.PubMedCrossRefGoogle Scholar
  61. 61.
    Norata GD, Garlaschelli K, Ongari M, et al.: Effect of the Toll-like receptor 4 (TLR-4) variants on intima-media thickness and monocyte-derived macrophage response to LPS. J Intern Med 2005, 258:21–27.PubMedCrossRefGoogle Scholar
  62. 62.
    Netea MG, Hijmans A, van Wissen S, et al.: Toll-like receptor-4 Asp299Gly polymorphism does not influence progression of atherosclerosis in patients with familial hypercholesterolaemia. Eur J Clin Invest 2004, 34:94–99.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc 2006

Authors and Affiliations

  1. 1.Blackburn Cardiovascular Genetics LaboratoryRobarts Research InstituteLondonCanada

Personalised recommendations