Current Atherosclerosis Reports

, Volume 8, Issue 3, pp 198–205 | Cite as

Human genetics of variation in high-density lipoprotein cholesterol

Abstract

Longitudinal population studies have confirmed plasma levels of high-density lipoprotein (HDL) cholesterol to be an important inverse coronary risk factor. Although environmental influences are known to regulate HDL cholesterol levels, genetic factors are also known to be important, and over 25 candidate genes have been proposed to be associated with variation in HDL cholesterol levels. A variety of monogenic conditions of extremely low or high HDL cholesterol has helped to delineate the physiology of HDL cholesterol metabolism in humans, which has led to the development of new therapeutic approaches to HDL cholesterol. However, most causes of genetic variation in HDL cholesterol in the general population are likely oligogenic or polygenic. We review the monogenic disorders associated with both high and low HDL cholesterol and the relevance of mutations and polymorphisms in these genes to variation in HDL cholesterol levels in the general population.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Boden WE: High-density lipoprotein cholesterol as an independent risk factor in cardiovascular disease: assessing the data from Framingham to the Veterans Affairs High-Density Lipoprotein Intervention Trial. Am J Cardiol 2000, 86:19L-22L.PubMedCrossRefGoogle Scholar
  2. 2.
    Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001, 285:2486–2497.Google Scholar
  3. 3.
    Wang X, Paigen B: Genetics of variation in HDL cholesterol in humans and mice. Circ Res 2005, 96:27–42.PubMedCrossRefGoogle Scholar
  4. 4.
    Lewis GF, Rader DJ: New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res 2005, 96:1221–1232.PubMedCrossRefGoogle Scholar
  5. 5.
    Timmins JM, Lee JY, Boudyguina E, et al.: Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apolipoprotein A-I. J Clin Invest 2005, 115:1333–1342.PubMedCrossRefGoogle Scholar
  6. 6.
    Brunham L, Kruit JK, Pape TD, et al.: Intestinal ABCA1 is a significant contributor to plasma HDL-C and ApoB levels in vivo. Circulation 2005, 112(Suppl):II-170.Google Scholar
  7. 7.
    Norum RA, Lakier JB, Goldstein S, et al.: Familial deficiency of apolipoproteins A-I and C-III and precocious coronaryartery disease. N Engl J Med 1982, 306:1513–1519.PubMedCrossRefGoogle Scholar
  8. 8.
    Schaefer EJ, Heaton WH, Wetzel MG, Brewer HB Jr: Plasma apolipoprotein A-1 absence associated with a marked reduction of high density lipoproteins and premature coronary artery disease. Arteriosclerosis 1982, 2:16–26.PubMedGoogle Scholar
  9. 9.
    Ordovas JM, Cassidy DK, Civeira F, et al.: Familial apolipoprotein A-I, C-III, and A-IV deficiency and premature atherosclerosis due to deletion of a gene complex on chromosome 11. J Biol Chem 1989, 264:16339–16342.PubMedGoogle Scholar
  10. 10.
    Ng DS, Leiter LA, Vezina C, et al.: Apolipoprotein A-I Q-2.X causing isolated apolipoprotein A-I deficiency in a family with analphalipoproteinemia. J Clin Invest 1994, 93:223–229.PubMedGoogle Scholar
  11. 11.
    Ng DS, Vezina C, Wolever TS, et al.: Apolipoprotein A-I deficiency. Biochemical and metabolic characteristics. Arterioscler Thromb Vasc Biol 1995, 15:2157–2164.PubMedGoogle Scholar
  12. 12.
    Matsunaga T, Hiasa Y, Yanagi H, et al.: Apolipoprotein A-I deficiency due to a codon 84 nonsense mutation of the apolipoprotein A-I gene. Proc Natl Acad Sci U S A 1991, 88:2793–2797.PubMedCrossRefGoogle Scholar
  13. 13.
    Dastani Z, Dangoisse C, Boucher B, et al.: A novel nonsense apolipoprotein A-I mutation (apoA-I(E136X)) causes low HDL cholesterol in French Canadians. Atherosclerosis 2006, 185:127–136.PubMedCrossRefGoogle Scholar
  14. 14.
    Yokota H, Hashimoto Y, Okubo S, et al.: Apolipoprotein A-I deficiency with accumulated risk for CHD but no symptoms of CHD. Atherosclerosis 2002, 162:399–407.PubMedCrossRefGoogle Scholar
  15. 15.
    Deeb SS, Cheung MC, Peng RL, et al.: A mutation in the human apolipoprotein A-I gene. Dominant effect on the level and characteristics of plasma high density lipoproteins. J Biol Chem 1991, 266:13654–13660.PubMedGoogle Scholar
  16. 16.
    Chiesa G, Sirtori CR: Apolipoprotein A-IMilano: current perspectives. Curr Opin Lipidol 2003, 14:159–163.PubMedCrossRefGoogle Scholar
  17. 17.
    Roma P, Gregg RE, Meng MS, et al.: In vivo metabolism of a mutant form of apolipoprotein A-I, apo A- IMilano, associated with familial hypoalphalipoproteinemia. J Clin Invest 1993, 1445–1452.Google Scholar
  18. 18.
    Nissen SE, Tsunoda T, Tuzcu EM, et al.: Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA 2003, 290:2292–2300.PubMedCrossRefGoogle Scholar
  19. 19.
    Bruckert E, von Eckardstein A, Funke H, et al.: The replacement of arginine by cysteine at residue 151 in apolipoprotein A-I produces a phenotype similar to that of apolipoprotein A-IMilano. Atherosclerosis 1997, 128:121–128.PubMedCrossRefGoogle Scholar
  20. 20.
    Miller M, Aiello D, Pritchard H, et al.: Apolipoprotein A-I(Zavalla) (Leu159—>Pro): HDL cholesterol deficiency in a kindred associated with premature coronary artery disease. Arterioscler Thromb Vasc Biol 1998, 18:1242–1247.PubMedGoogle Scholar
  21. 21.
    Rader DJ, Gregg RE, Meng MS, et al.: In vivo metabolism of a mutant apolipoprotein, apoA-IIowa, associated with hypoalphalipoproteinemia and hereditary systemic amyloidosis. J Lipid Res 1992, 33:755–763.PubMedGoogle Scholar
  22. 22.
    Fredrickson DS: The inheritance of high density lipoprotein deficiency (Tangier disease). J Clin Invest 1964, 43:228–236.PubMedGoogle Scholar
  23. 23.
    Rust S, Rosier M, Funke H, et al.: Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet 1999, 22:352–355.PubMedCrossRefGoogle Scholar
  24. 24.
    Bodzioch M, Orso E, Klucken J, et al.: The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 1999, 22:347–351.PubMedCrossRefGoogle Scholar
  25. 25.
    Brooks-Wilson A, Marcil M, Clee SM, et al.: Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet 1999, 22:336–345.PubMedCrossRefGoogle Scholar
  26. 26.
    Schaefer EJ, Blum CB, Levy RI, et al.: Metabolism of high-density lipoprotein apolipoproteins in Tangier disease. N Engl J Med 1978, 299:905–910.PubMedCrossRefGoogle Scholar
  27. 27.
    Marcil M, Brooks-Wilson A, Clee SM, et al.: Mutations in the ABC1 gene in familial HDL deficiency with defective cholesterol efflux see comments. Lancet 1999, 354:1341–1346.PubMedCrossRefGoogle Scholar
  28. 28.
    Schaefer EJ, Zech LA, Schwartz DE, Brewer HB Jr: Coronary heart disease prevalence and other clinical features in familial high-density lipoprotein deficiency (Tangier disease). Ann Intern Med 1980, 93:261–266.PubMedGoogle Scholar
  29. 29.
    Serfaty-Lacrosniere C, Civeira F, Lanzberg A, et al.: Homozygous Tangier disease and cardiovascular disease. Atherosclerosis 1994, 107:85–98.PubMedCrossRefGoogle Scholar
  30. 30.
    Clee SM, Zwinderman AH, Engert JC, et al.: Common genetic variation in ABCA1 is associated with altered lipoprotein levels and a modified risk for coronary artery disease. Circulation 2001, 103:1198–1205.PubMedGoogle Scholar
  31. 31.
    Brousseau ME, Bodzioch M, Schaefer EJ, et al.: Common variants in the gene encoding ATP-binding cassette transporter 1 in men with low HDL cholesterol levels and coronary heart disease. Atherosclerosis 2001, 154:607–611.PubMedCrossRefGoogle Scholar
  32. 32.
    Cohen JC, Kiss RS, Pertsemlidis A, et al.: Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 2004, 305:869–872.PubMedCrossRefGoogle Scholar
  33. 33.
    Frikke-Schmidt R, Nordestgaard BG, Jensen GB, Tybjaerg-Hansen A: Genetic variation in ABC transporter A1 contributes to HDL cholesterol in the general population. J Clin Invest 2004, 114:1343–1353.PubMedCrossRefGoogle Scholar
  34. 34.
    Alrasadi K, Ruel IL, Marcil M, Genest J: Functional mutations of the ABCA1 gene in subjects of French-Canadian descent with HDL deficiency. Atherosclerosis 2005, In press.Google Scholar
  35. 35.
    Linsel-Nitschke P, Tall AR: HDL as a target in the treatment of atherosclerotic cardiovascular disease. Nat Rev Drug Discovery 2005, 4:193–205.CrossRefGoogle Scholar
  36. 36.
    Kuivenhoven JA, Pritchard H, Hill J, et al.: The molecular pathology of lecithin:cholesterol acyltransferase (LCAT) deficiency syndromes [review]. J Lipid Res 1997, 38:191–205.PubMedGoogle Scholar
  37. 37.
    Rader DJ, Ikewaki K, Duverger N, et al.: Markedly accelerated catabolism of apolipoprotein A-II (ApoA-II) and high density lipoproteins containing ApoA-II in classic lecithin: cholesterol acyltransferase deficiency and fish-eye disease. J Clin Invest 1994, 93:321–330.PubMedGoogle Scholar
  38. 38.
    Knoblauch H, Bauerfeind A, Toliat MR, et al.: Haplotypes and SNPs in 13 lipid-relevant genes explain most of the genetic variance in high-density lipoprotein and low-density lipoprotein cholesterol. Hum Mol Genet 2004, 13:993–1004.PubMedCrossRefGoogle Scholar
  39. 39.
    Blades B, Vega GL, Grundy SM: Activities of lipoprotein lipase and hepatic triglyceride lipase in postheparin plasma of patients with low concentrations of HDL cholesterol. Arterioscler Thromb Vasc Biol 1993, 13:1227–1235.Google Scholar
  40. 40.
    Groenemeijer BE, Hallman MD, Reymer PW, et al.: Genetic variant showing a positive interaction with beta-blocking agents with a beneficial influence on lipoprotein lipase activity, HDL cholesterol, and triglyceride levels in coronary artery disease patients. The Ser447-stop substitution in the lipoprotein lipase gene. REGRESS Study Group. Circulation 1997, 95:2628–2635.PubMedGoogle Scholar
  41. 41.
    Kuivenhoven JA, Groenemeyer BE, Boer JM, et al.: Ser447stop mutation in lipoprotein lipase is associated with elevated HDL cholesterol levels in normolipidemic males. Arterioscler Thromb Vasc Biol 1997, 17:595–599.PubMedGoogle Scholar
  42. 42.
    Lilja HE, Soro A, Ylitalo K, et al.: A candidate gene study in low HDL-cholesterol families provides evidence for the involvement of the APOA2 gene and the APOA1C3A4 gene cluster. Atherosclerosis 2002, 164:103–111.PubMedCrossRefGoogle Scholar
  43. 43.
    Pajukanta P, Allayee H, Krass KL, et al.: Combined analysis of genome scans of dutch and finnish families reveals a susceptibility locus for high-density lipoprotein cholesterol on chromosome 16q. Am J Hum Genet 2003, 72:903–917.PubMedCrossRefGoogle Scholar
  44. 44.
    Kort EN, Ballinger DG, Ding W, et al.: Evidence of linkage of familial hypoalphalipoproteinemia to a novel locus on chromosome 11q23. Am J Hum Genet 2000, 66:1845–1856.PubMedCrossRefGoogle Scholar
  45. 45.
    Mahaney CM, Blangero J, Rainwater LD, et al.: A major locus influencing plasma high-density lipoprotein cholesterol levels in the San Antonio family heart study. Arterioscler Thromb Vasc Biol 1995, 15:1730–1739.PubMedGoogle Scholar
  46. 46.
    Arya R, Duggirala R, Almasy L, et al.: Linkage of high-density lipoprotein-cholesterol concentrations to a locus on chromosome 9p in Mexican Americans. Nat Genet 2002, 30:102–105.PubMedCrossRefGoogle Scholar
  47. 47.
    Malhotra A, Coon H, Feitosa MF, et al.: Meta-analysis of genome-wide linkage studies for quantitative lipid traits in African Americans. Hum Mol Genet 2005, 14:3955–3962.PubMedCrossRefGoogle Scholar
  48. 48.
    Dastani Z, Quiogue L, Plaisier C, et al.: Evidence for a gene influencing high-density lipoprotein cholesterol on chromosome 4q31.21. Arterioscler Thromb Vasc Biol 2006, 26:392–397.PubMedCrossRefGoogle Scholar
  49. 49.
    Brown ML, Inazu A, Hesler CB, et al.: Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature 1989, 342:448–451.PubMedCrossRefGoogle Scholar
  50. 50.
    Inazu A, Brown ML, Hesler CB, et al.: Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N Engl J Med 1990, 323:1234–1238.PubMedCrossRefGoogle Scholar
  51. 51.
    Inazu A, Jiang XC, Haraki T, et al.: Genetic cholesteryl ester transfer protein deficiency caused by two prevalent mutations as a major determinant of increased levels of high density lipoprotein cholesterol. J Clin Invest 1994, 94:1872–1882.PubMedGoogle Scholar
  52. 52.
    Maruyama T, Sakai N, Ishigami M, et al.: Prevalence and phenotypic spectrum of cholesteryl ester transfer protein gene mutations in Japanese hyperalphalipoproteinemia. Atherosclerosis 2003, 166:177–185.PubMedCrossRefGoogle Scholar
  53. 53.
    Nagano M, Yamashita S, Hirano K, et al.: Molecular mechanisms of cholesteryl ester transfer protein deficiency in Japanese. J Atheroscler Thromb 2004, 11:110–121.PubMedGoogle Scholar
  54. 54.
    Ikewaki K, Rader DJ, Sakamoto T, et al.: Delayed catabolism of high density lipoprotein apolipoproteins A-I and A-II in human cholesteryl ester transfer protein deficiency. J Clin Invest 1993, 92:1650–1658.PubMedGoogle Scholar
  55. 55.
    Ikewaki K, Nishiwaki M, Sakamoto T, et al.: Increased catabolic rate of low density lipoproteins in humans with cholesteryl ester transfer protein deficiency. J Clin Invest 1995, 96:1573–1581.PubMedCrossRefGoogle Scholar
  56. 56.
    Hirano K, Yamashita S, Nakajima N, et al.: Genetic cholesteryl ester transfer protein deficiency is extremely frequent in the Omagari area of Japan. Marked hyperalphalipoproteinemia caused by CETP gene mutation is not associated with longevity. Arterioscler Thromb Vasc Biol 1997, 17:1053–1059.PubMedGoogle Scholar
  57. 57.
    Hirano K, Yamashita S, Kuga Y, et al.: Atherosclerotic disease in marked hyperalphalipoproteinemia. Arterioscler Thromb Vasc Biol 1995, 15:1849–1856.PubMedGoogle Scholar
  58. 58.
    Sakai N, Yamashita S, Hirano K, et al.: Frequency of exon 15 missense mutation (442D:G) in cholesteryl ester transfer protein gene in hyperalphalipoproteinemic Japanese subjects. Atherosclerosis 1995, 114:139–145.PubMedCrossRefGoogle Scholar
  59. 59.
    Moriyama Y, Okamura T, Inazu A, et al.: A low prevalence of coronary heart disease among subjects with increased high-density lipoprotein cholesterol levels, including those with plasma cholesteryl ester transfer protein deficiency. Prev Med 1998, 27:659–667.PubMedCrossRefGoogle Scholar
  60. 60.
    Curb JD, Abbott RD, Rodriguez BL, et al.: A prospective study of HDL-C and cholesteryl ester transfer protein gene mutations and the risk of coronary heart disease in the elderly. J Lipid Res 2004, 45:948–953.PubMedCrossRefGoogle Scholar
  61. 61.
    Boekholdt SM, Thompson JF: Natural genetic variation as a tool in understanding the role of CETP in lipid levels and disease. J Lipid Res 2003, 44:1080–1093.PubMedCrossRefGoogle Scholar
  62. 62.
    Rader DJ: Inhibition of cholesteryl ester transfer protein activity: a new therapeutic approach to raising high-density lipoprotein. Curr Atheroscler Rep 2004, 6:398–405.PubMedCrossRefGoogle Scholar
  63. 63.
    Hegele R, Little JA, Vezina C, et al.: Hepatic lipase deficiency: clinical, biochemical, and molecular genetic characteristics. Arterioscler Thromb 1993, 13:720–728.PubMedGoogle Scholar
  64. 64.
    Connelly PW, Hegele RA: Hepatic lipase deficiency. Crit Rev Clin Lab Sci 1998, 35:547–572.PubMedCrossRefGoogle Scholar
  65. 65.
    Cohen JC, Vega GL, Grundy SM: Hepatic lipase: new insights from genetic and metabolic studies. Curr Opin Lipidol 1999, 10:259–267.PubMedCrossRefGoogle Scholar
  66. 66.
    Jaye M, Lynch KJ, Krawiec J, et al.: A novel endothelial-derived lipase that modulates HDL metabolism. Nat Genet 1999, 21:424–428.PubMedCrossRefGoogle Scholar
  67. 67.
    Ishida T, Choi S, Kundu RK, et al.: Endothelial lipase is a major determinant of HDL level. J Clin Invest 2003, 111:347–355.PubMedCrossRefGoogle Scholar
  68. 68.
    Jin W, Millar JS, Broedl U, et al.: Inhibition of endothelial lipase causes increased HDL cholesterol levels in vivo. J Clin Invest 2003, 111:357–362.PubMedCrossRefGoogle Scholar
  69. 69.
    Ma K, Cilingiroglu M, Otvos JD, et al.: Endothelial lipase is a major genetic determinant for high-density lipoprotein concentration, structure, and metabolism. Proc Natl Acad Sci U S A 2003, 100:2748–2753.PubMedCrossRefGoogle Scholar
  70. 70.
    deLemos AS, Wolfe ML, Long CJ, et al.: Identification of genetic variants in endothelial lipase in persons with elevated high-density lipoprotein cholesterol. Circulation 2002, 106:1321–1326.PubMedCrossRefGoogle Scholar
  71. 71.
    Mank-Seymour AR, Durham KL, Thompson JF, et al.: Association between single-nucleotide polymorphisms in the endothelial lipase (LIPG) gene and high-density lipoprotein cholesterol levels. Biochim Biophys Acta 2004, 1636:40–46.PubMedGoogle Scholar
  72. 72.
    Kozarsky KF, Donahee MH, Rigotti A, et al.: Overexpression of the HDL receptor SR-B1 alters plasma HDL and bile cholesterol levels. Nature 1997, 387:414–417.PubMedCrossRefGoogle Scholar
  73. 73.
    Rigotti A, Trigatti BL, Penman M, et al.: A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc Natl Acad Sci U S A 1997, 94:12610–12615.PubMedCrossRefGoogle Scholar
  74. 74.
    Varban ML, Rinninger F, Wang N, et al.: Targeted mutation reveals a central role for SR-BI in hepatic selective uptake of high density lipoprotein cholesterol. Proc Natl Acad Sci USA 1998, 95:4619–4624.PubMedCrossRefGoogle Scholar
  75. 75.
    Acton S, Osgood D, Donoghue M, et al.: Association of polymorphisms at the SR-BI gene locus with plasma lipid levels and body mass index in a white population. Arterioscler Thromb Vasc Biol 1999, 19:1734–1743.PubMedGoogle Scholar
  76. 76.
    Hsu LA, Ko YL, Wu S, et al.: Association between a novel 11-base pair deletion mutation in the promoter region of the scavenger receptor class B type I gene and plasma HDL cholesterol levels in Taiwanese Chinese. Arterioscler Thromb Vasc Biol 2003, 23:1869–1874.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc 2006

Authors and Affiliations

  1. 1.Institute for Translational Medicine and Therapeutics and Cardiovascular InstituteUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations