Current Atherosclerosis Reports

, Volume 7, Issue 2, pp 121–126

Vulnerable plaque: Definition, detection, treatment, and future implications

  • Kerem Ozer
  • Mehmet Cilingiroglu
Article

Abstract

Atherosclerosis continues to account for significant morbidity and mortality in most of the world. The major proportion of atherosclerosis mortality is related to atherosclerotic coronary artery disease, yet there still is not an optimal method for making the diagnosis of vulnerable plaque in vivo. The search for such an undefined method, along with studies on amelioration of currently available technology, gains special significance when the association between the qualitative definition of lesions in an individual and cardiovascular risks are considered. We, therefore, start by defining the critical lesion of coronary atherosclerosis and review the advantages and potential for clinical use of various methods to detect the vulnerable plaque and comment on possible future implications in this field.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Yusuf S, Reddy S, Ounpuu S, et al.: Global burden of cardiovascular diseases, I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation 2001, 104:2746–2753.PubMedGoogle Scholar
  2. 2.
    Naghavi M, Libby P, Falk E, et al.: From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 2003, 108:1664–1672.PubMedCrossRefGoogle Scholar
  3. 3.
    Van der Wal AC, Becker AE, van der Loos CM, Das PK: Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 1994, 89:36–44.PubMedGoogle Scholar
  4. 4.
    Loree HM, Kamm RD, Stringfellow RG, Lee RT: Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res 1992, 71:850–858.PubMedGoogle Scholar
  5. 5.
    Farb A, Burke AP, Tang AL, et al.: Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation 1996, 93:1354–1363.PubMedGoogle Scholar
  6. 6.
    Virmani R, Kolodgie FD, Burke AP, et al.: Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000, 20:1262–1275.PubMedGoogle Scholar
  7. 7.
    Goldstein JA, Demetriou D, Grines CL, et al.: Multiple complex coronary plaques in patients with acute myocardial infarction. N Engl J Med 2000, 343:915–922.PubMedCrossRefGoogle Scholar
  8. 8.
    Moulton KS: Plaque angiogenesis and atherosclerosis. Curr Atheroscler Rep 2001, 3:225–233.PubMedGoogle Scholar
  9. 9.
    Targonski PV, Bonetti PO, Pumper GM, et al.: Coronary endothelial dysfunction is associated with an increased risk of cerebrovascular events. Circulation 2003, 107:2805–2809.PubMedCrossRefGoogle Scholar
  10. 10.
    Halcox JP, Schenke WH, Zalos G, et al.: Prognostic value of coronary vascular endothelial function. Circulation 2002, 106:653–658.PubMedCrossRefGoogle Scholar
  11. 11.
    Varnava AM, Mills PG, Davies MJ: Relationship between coronary artery remodeling and plaque vulnerability. Circulation 2002, 105:939–943.PubMedCrossRefGoogle Scholar
  12. 12.
    Nissen SE, Yock P: Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation 2001, 103:604–616.PubMedGoogle Scholar
  13. 13.
    Yamagishi M, Terashima M, Awano K, et al.: Morphology of vulnerable coronary plaque: insights from follow-up of patients examined by intravascular ultrasound before an acute coronary syndrome. J Am Coll Cardiol 2000, 35:106–111.PubMedCrossRefGoogle Scholar
  14. 14.
    van der Lugt A, Gussenhoven EJ, Stijnen T, et al.: Comparison of intravascular ultrasonic findings after coronary balloon angioplasty evaluated in vitro with histology. Am J Cardiol 1995, 76:661–666.PubMedCrossRefGoogle Scholar
  15. 15.
    Komiyama N, Berry GJ, Kolz ML, et al.: Tissue characterization of atherosclerotic plaques by intravascular ultrasound radiofrequency signal analysis: an in vitro study of human coronary arteries. Am Heart J 2000, 140:565–574.PubMedCrossRefGoogle Scholar
  16. 16.
    de Korte CL, Carlier SG, Mastik F, et al.: Morphological and mechanical information of coronary arteries obtained with intravascular elastography: feasibility study in vivo. Eur Heart J 2002, 23:405–413.PubMedCrossRefGoogle Scholar
  17. 17.
    de Korte CL, Sierevogel MJ, Mastik F, et al.: Identification of atherosclerotic plaque components with intravascular ultrasound elastography in vivo: a Yucatan pig study. Circulation 2002, 105:1627–1630.PubMedCrossRefGoogle Scholar
  18. 18.
    Ueda Y, Asakura M, Hirayama A, et al.: Intracoronary morphology of culprit lesions after reperfusion in acute myocardial infarction: serial angioscopic observations. J Am Coll Cardiol 1996, 27:606–610.PubMedCrossRefGoogle Scholar
  19. 19.
    Mizuno K, Miyamoto A, Satomura K, et al.: Angioscopic coronary macromorphology in patients with acute coronary disorders. Lancet 1991, 337:809–812.PubMedCrossRefGoogle Scholar
  20. 20.
    Asakura M, Ueda Y, Yamaguchi O, et al.: Extensive development of vulnerable plaques as a pan-coronary process in patients with myocardial infarction: an angioscopic study. J Am Coll Cardiol 2001, 37:1284–1288.PubMedCrossRefGoogle Scholar
  21. 21.
    Ohsawa D, Uchida Y, Fujimori Y, et al.: Angioscopic evaluation of stabilizing effects of an antilipemic agent, bezafibrate, on coronary plaques in patients with coronary artery disease: a multicenter prospective study. Jpn Heart J 2002, 43:319–331.PubMedCrossRefGoogle Scholar
  22. 22.
    Yabushita H, Bouma BE, Houser SL, et al.: Characterization of human atherosclerosis by optical coherence tomography. Circulation 2002, 106:1640–1645.PubMedCrossRefGoogle Scholar
  23. 23.
    Tearney GJ, Yabushita H, Houser SL, et al.: Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 2003, 107:113–119.PubMedCrossRefGoogle Scholar
  24. 24.
    MacNeill BD, Jang IK, Bouma BE, et al.: Focal and multi-focal plaque macrophage distributions in patients with acute and stable presentations of coronary artery disease. J Am Coll Cardiol 2004, 44:972–979.PubMedCrossRefGoogle Scholar
  25. 25.
    Casscells W, Hathorn B, David M, et al.: Thermal detection of cellular infiltrates in living atherosclerotic plaques: possible implications for plaque rupture and thrombosis. Lancet 1996, 347:1447–1451.PubMedCrossRefGoogle Scholar
  26. 26.
    MacNeill BD, Lowe HC, Takano M, et al.: Intravascular modalities for detection of vulnerable plaque: current status. Arterioscler Thromb Vasc Biol 2003, 23:1333–1342.PubMedCrossRefGoogle Scholar
  27. 27.
    Stefanadis C, Toutouzas K, Tsiamis E, et al.: Increased local temperature in human coronary atherosclerotic plaques: an independent predictor of clinical outcome in patients undergoing a percutaneous coronary intervention. J Am Coll Cardiol 2001, 37:1277–1283.PubMedCrossRefGoogle Scholar
  28. 28.
    Toutouzas K, Stefanadis C, Tsiamis E, et al.: Correlation of heat production of culprit atherosclerotic lesion with soluble cell adhesion molecules. J Am Coll Cardiol 2002, 39(Suppl A):323.CrossRefGoogle Scholar
  29. 29.
    Romer TJ, Brennan JF 3rd, Puppels GJ, et al.: Intravascular ultrasound combined with Raman spectroscopy to localize and quantify cholesterol and calcium salts in atherosclerotic coronary arteries. Arterioscler Thromb Vasc Biol 2000, 20:478–483.PubMedGoogle Scholar
  30. 30.
    Buschman HP, Motz JT, Deinum G, et al.: Diagnosis of human coronary atherosclerosis by morphology-based Raman spectroscopy. Cardiovasc Pathol 2001, 10:59–68.PubMedCrossRefGoogle Scholar
  31. 31.
    Moreno PR, Lodder RA, Purushothaman KR, et al.: Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy. Circulation 2002, 105:923–927.PubMedCrossRefGoogle Scholar
  32. 32.
    Yuan C, Beach KW, Smith LH Jr, et al.: Measurement of atherosclerotic carotid plaque size in vivo using high resolution magnetic resonance imaging. Circulation 1998, 98:2666–2671.PubMedGoogle Scholar
  33. 33.
    Hofmann LV, Bluemke DA, Lawler B, et al.: Intravascular MRI of peripheral arteries: feasibility study for imaging of arterial pathology [abstract]. Circulation 2001, 104(Suppl II):II-375.Google Scholar
  34. 34.
    Rogers WJ, Prichard JW, Hu YL, et al.: Characterization of signal properties in atherosclerotic plaque components by intravascular MRI. Arterioscler Thromb Vasc Biol 2000, 20:1824–1830.PubMedGoogle Scholar
  35. 35.
    Nakamura M, Lee DP, Yeung AC: Identification and treatment of vulnerable plaque. Rev Cardiovasc Med 2004, 5(Suppl 2):S22-S33.PubMedGoogle Scholar
  36. 36.
    Schmermund A, Baumgart D, Sack S, et al.: Assessment of coronary calcification by electron-beam computed tomography in symptomatic patients with normal, abnormal or equivocal exercise stress test. Eur Heart J 2000, 21:1674–1682.PubMedCrossRefGoogle Scholar
  37. 37.
    Achenbach S, Moselewski F, Ropers D, et al.: Detection of calcified and noncalcified coronary atherosclerotic plaque by contrastenhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation 2004, 109:14–17.PubMedCrossRefGoogle Scholar
  38. 38.
    Ohtsuki K, Akashi K, Aoka Y, et al.: Technetium-99m HYNIC-annexin V: a potential radiopharmaceutical for the in-vivo detection of apoptosis. Eur J Nucl Med 1999, 26:1251–1258.PubMedCrossRefGoogle Scholar
  39. 39.
    Mitchel J, Waters D, Lai T, et al.: Identification of coronary thrombus with a IIb/IIIa platelet inhibitor radiopharmaceutical, technetium-99m DMP-444: a canine model. Circulation 2000, 101:1643–1646.PubMedGoogle Scholar
  40. 40.
    Ohtsuki K, Hayase M, Akashi K, Kopiwoda S, Strauss HW: Detection of monocyte chemoattractant protein-1 receptor expression in experimental atherosclerotic lesions: an autoradiographic study. Circulation 2001, 104:203–208.PubMedGoogle Scholar
  41. 41.
    Yu X, Song SK, Chen J, et al.: High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent. Magn Reson Med 2000, 44:867–872.PubMedCrossRefGoogle Scholar
  42. 42.
    Chen J, Tung CH, Mahmood U, et al.: In vivo imaging of proteolytic activity in atherosclerosis. Circulation 2002, 105:2766–2771.PubMedCrossRefGoogle Scholar
  43. 43.
    Schieffer B, Schieffer E, Hilfiker-Kleiner D, et al.: Expression of angiotensin II and interleukin 6 in human c oronary atherosclerotic plaques: potential implications for inflammation and plaque instability. Circulation 2000, 101:1372–1378.PubMedGoogle Scholar
  44. 44.
    Heidland UE, Strauer BE: Left ventricular muscle mass and elevated heart rate are associated with coronary plaque disruption. Circulation 2001, 104:1477–1482.PubMedGoogle Scholar
  45. 45.
    Yasunari K, Maeda K, Nakamura M, Yoshikawa J: Carvedilol inhibits pressure-induced increase in oxidative stress in coronary smooth muscle cells. Hypertens Res 2002, 25:419–425.PubMedCrossRefGoogle Scholar
  46. 46.
    Bredie SJ, Wollersheim H, Verheugt FW, Thien T: Low-dose aspirin for primary prevention of cardiovascular disease. Semin Vasc Med 2003, 3:177–184.PubMedCrossRefGoogle Scholar
  47. 47.
    Mehta JL, Chen J, Yu F, Li DY: Aspirin inhibits ox-LDL-mediated LOX-1 expression and metalloproteinase-1 in human coronary endothelial cells. Cardiovasc Res 2004, 64:243–249.PubMedCrossRefGoogle Scholar
  48. 48.
    Cicha I, Garlichs CD, Daniel WG, Goppelt-Struebe M: Activated human platelets release connective tissue growth factor. Thromb Haemost 2004, 91:755–760.PubMedGoogle Scholar
  49. 49.
    Shepherd J, Cobbe SM, Ford I, et al.: Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med 1995, 333:1301–1307.PubMedCrossRefGoogle Scholar
  50. 50.
    Downs JR, Clearfield M, Weis S, et al.: Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA 1998, 279:1615–1622.PubMedCrossRefGoogle Scholar
  51. 51.
    Bae JH, Bassenge E, Kim KY, et al.: Effects of low-dose atorvastatin on vascular responses in patients undergoing percutaneous coronary intervention with stenting. J Cardiovasc Pharmacol Ther 2004, 9:185–192.PubMedCrossRefGoogle Scholar
  52. 52.
    Sakabe K, Fukuda N, Wakayama K, et al.: Lipid-altering changes and pleiotropic effects of atorvastatin in patients with hypercholesterolemia. Am J Cardiol 2004, 94:497–500.PubMedCrossRefGoogle Scholar
  53. 53.
    Loike JD, Shabtai DY, Neuhut R, et al.: Statin inhibition of Fc receptor-mediated phagocytosis by macrophages is modulated by cell activation and cholesterol. Arterioscler Thromb Vasc Biol 2004, In press.Google Scholar
  54. 54.
    Blanco-Colio LM, Tunon J, Martin-Ventura JL, Egido J: Anti-inflammatory and immunomodulatory effects of statins. Kidney Int 2003, 63:12–23.PubMedCrossRefGoogle Scholar
  55. 55.
    Son JW, Koh KK, Ahn JY, et al.: Effects of statin on plaque stability and thrombogenicity in hypercholesterolemic patients with coronary artery disease. Int J Cardiol 2003, 88:77–82.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc 2005

Authors and Affiliations

  • Kerem Ozer
    • 1
  • Mehmet Cilingiroglu
    • 1
  1. 1.Department of MedicineBaylor College of MedicineHoustonUSA

Personalised recommendations