Current Atherosclerosis Reports

, Volume 7, Issue 3, pp 235–241 | Cite as

Advances in the genetic basis of coronary artery disease

  • Qing Wang
Article

Abstract

Exciting advances have been made recently in genetic studies of coronary artery disease (CAD), myocardial infarction (MI), and ischemic stroke. One disease-causing gene for CAD and MI has been identified as MEF2A, which is located on chromosome 15q26.3 and encodes a transcriptional factor with a high level of expression in coronary endothelium. Approximately 1% to 2% of CAD patients may carry an MEF2A mutation. Four new susceptibility genes have been identified using genome-wide association studies or genome-wide linkage studies: LTA (encoding cytokine lymphotoxin-α) on 6p21.3 for MI; LGALS2 (encoding galectin-2, an LTA-interacting protein) on 22q12–q13 for MI; ALOX5AP (encoding 5-lipoxygenase activating protein involved in synthesizing potent proinflammatory leukotrienes) on 13q12–13 for MI and stroke; and PDE4D (encoding phosphodiesterase 4D) on 5q12 for ischemic stroke. These studies identify a new mechanism, the myocyte enhancer factor 2 (MEF2) signaling pathway of vascular endothelium, for the pathogenesis of CAD, and also confirm the role of inflammation in the disease process.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Okrainec K, Banerjee DK, Eisenberg MJ: Coronary artery disease in the developing world. Am Heart J 2004, 148:7–15.PubMedCrossRefGoogle Scholar
  2. 2.
    Wang Q, Bond M, Elston RC, Tian X: Molecular genetics. In Textbook of Cardiovascular Medicine, edn 2. Edited by Topol EJ. Philadelphia: Lippincott Williams & Wilkins; 2001, electronic chapter 97.Google Scholar
  3. 3.
    Wang L, Fan C, Topol SE, et al.: Mutation of MEF2A in an inherited disorder with features of coronary artery disease. Science 2003, 302:1578–1581.PubMedCrossRefGoogle Scholar
  4. 4.
    Lander E, Kruglyak L: Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 1995, 11:241–247.PubMedCrossRefGoogle Scholar
  5. 5.
    Wang Q, Rao S, Shen GQ, Li L, et al.: Premature myocardial infarction novel susceptibility locus on chromosome 1p34–36 identified by genomewide linkage analysis. Am J Hum Genet 2004, 74:262–271.PubMedCrossRefGoogle Scholar
  6. 6.
    Broeckel U, Hengstenberg C, Mayer B, et al.: A comprehensive linkage analysis for myocardial infarction and its related risk factors. Nat Genet 2002, 30:210–214.PubMedCrossRefGoogle Scholar
  7. 7.
    Helgdottir A, Manolescu A, Thorleifsson G, et al.: The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat Genet 2004, 36:233–239.CrossRefGoogle Scholar
  8. 8.
    Pajukanta P, Cargill M, Viitanen L, et al.: Two loci on chromosomes 2 and X for premature coronary heart disease identified in early- and late-settlement populations of Finland. Am J Hum Genet 2000, 67:1481–1493.PubMedCrossRefGoogle Scholar
  9. 9.
    Hauser ER, Crossman DC, Granger CB, et al.: A Genomewide Scan for Early-Onset Coronary Artery Disease in 438 Families: The GENECARD Study. Am J Hum Genet 2004, 75:436–447.PubMedCrossRefGoogle Scholar
  10. 10.
    Francke S, Manraj M, Lacquemant C, et al.: A genome-wide scan for coronary heart disease suggests in Indo- Mauritians a susceptibility locus on chromosome 16p13 and replicates linkage with the metabolic syndrome on 3q27. Hum Mol Genet 2001, 10:2751–2765.PubMedCrossRefGoogle Scholar
  11. 11.
    Harrap SB, Zammit KS, Wong ZY, et al.: Genome-wide linkage analysis of the acute coronary syndrome suggests a locus on chromosome 2. Arterioscler Thromb Vasc Biol 2002, 22:874–878.PubMedCrossRefGoogle Scholar
  12. 12.
    Gretarsdottir S, Sveinbjornsdottir S, Jonsson HH, et al.: Localization of a susceptibility gene for common forms of stroke to 5q12. Am J Hum Genet 2002, 70:593–603.PubMedCrossRefGoogle Scholar
  13. 13.
    Curran ME, Splawski I, Timothy KW, et al.: A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 1995, 80:795–803.PubMedCrossRefGoogle Scholar
  14. 14.
    Wang Q, Shen J, Splawski I, et al.: SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 1995, 80:805–811.PubMedCrossRefGoogle Scholar
  15. 15.
    Chen Q, Kirsch GE, Zhang D, et al.: Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 1998, 392:293–296.PubMedCrossRefGoogle Scholar
  16. 16.
    Bhagavatula MR, Fan C, Shen GQ, et al.: Transcription factor MEF2A mutations in patients with coronary artery disease. Hum Mol Genet 2004, 13:3181–3188.PubMedCrossRefGoogle Scholar
  17. 17.
    Helgadottir A, Gretarsdottir S, St Clair D, et al.: Association between the gene encoding 5-lipoxygenase-activating protein and stroke replicated in a Scottish population. Am J Hum Genet 2005, 76:505–509.PubMedCrossRefGoogle Scholar
  18. 18.
    Gretarsdottir S, Thorleifsson G, Reynisdottir ST, et al.: The gene encoding phosphodiesterase 4D confers risk of ischemic stroke. Nat Genet 2003, 35:131–138.PubMedCrossRefGoogle Scholar
  19. 19.
    Shen G, Archacki SR, Wang Q: The molecular genetics of coronary artery disease and myocardial infarction. Acute Coronary Syndrome 2004, 6:129–141.Google Scholar
  20. 20.
    Wang Q, Pyeritz RE: Molecular genetics of cardiovascular disease. In Textbook of Cardiovascular Medicine, edn 1. Edited by Topol EJ. New York: Lippincott Williams & Wilkins; 2000:1–12.Google Scholar
  21. 21.
    Wang Q, Chen Q: Cardiovascular disease and congenital defects. Nature Encyclopedia of Life Sciences 2000, 3:646–657.Google Scholar
  22. 22.
    Wang Q, Chen Q: Cardiovascular disease and congenital heart defects. Nature Encyclopedia of Human Genome 2003, 1:396–411.Google Scholar
  23. 23.
    Freimer N, Sabatti C: The use of pedigree, sib-pair and association studies of common diseases for genetic mapping and epidemiology. Nat Genet 2004, 36:1045–1051.PubMedCrossRefGoogle Scholar
  24. 24.
    Ozaki K, Ohnishi Y, Iida A, et al.: Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction. Nat Genet 2002, 32:650–654.PubMedCrossRefGoogle Scholar
  25. 25.
    PROCARDIS Consortium: A trio family study showing association of the lymphotoxin-alpha N26 (804A) allele with coronary artery disease. Eur J Hum Genet 2004, 12:770–774.CrossRefGoogle Scholar
  26. 26.
    Yamada A, Ichihara S, Murase Y, et al.: Lack of association of polymorphisms of the lymphotoxin alpha gene with myocardial infarction in Japanese. J Mol Med 2004, 82:477–483.PubMedGoogle Scholar
  27. 27.
    Koch W, Kastrati A, Bottiger C, et al.: Interleukin-10 and tumor necrosis factor gene polymorphisms and risk of coronary artery disease and myocardial infarction. Atherosclerosis 2001, 159:137–144.PubMedCrossRefGoogle Scholar
  28. 28.
    Koch W, Tiroch K, Von BN, et al.: Tumor necrosis factor-alpha, lymphotoxin-alpha, and interleukin-10 gene polymorphisms and restenosis after coronary artery stenting. Cytokine 2003, 24:161–171.PubMedCrossRefGoogle Scholar
  29. 29.
    Ozaki K, Inoue K, Sato H, et al.: Functional variation in LGALS2 confers risk of myocardial infarction and regulates lymphotoxin-alpha secretion in vitro. Nature 2004, 429:72–75.PubMedCrossRefGoogle Scholar
  30. 30.
    Gossett LA, Kelvin DJ, Sternberg EA, Olson EN: A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple musclespecific genes. Mol Cell Biol 1989, 9:5022–5033.PubMedGoogle Scholar
  31. 31.
    Pollock R, Treisman R: Human SRF-related proteins: DNA-binding properties and potential regulatory targets. Genes Dev 1991, 5:2327–2341.PubMedGoogle Scholar
  32. 32.
    Yu YT, Breitbart RE, Smoot LB, et al.: Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors. Genes Dev 1992, 6:1783–1798.PubMedGoogle Scholar
  33. 33.
    McDermott JC, Cardoso MC, Yu YT, et al.: hMEF2C gene encodes skeletal muscle- and brain-specific transcription factors. Mol Cell Biol 1993, 13:2564–2577.PubMedGoogle Scholar
  34. 34.
    Breitbart RE, Liang CS, Smoot LB, et al.: A fourth human MEF2 transcription factor, hMEF2D, is an early marker of the myogenic lineage. Development 1993, 118:1095–1106.PubMedGoogle Scholar
  35. 35.
    Black BL, Olson EN: Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 1998, 14:167–196.PubMedCrossRefGoogle Scholar
  36. 36.
    Funk CD, Chen XS, Johnson EN, Zhao L: Lipoxygenase genes and their targeted disruption. Prostaglandins Other Lipid Mediat 2002, 68–69:303–312.PubMedGoogle Scholar
  37. 37.
    Hedi H, Norbert G: 5-lipoxygenase pathway, dendritic cells, and adaptive immunity. J Biomed Biotechnol 2004, 2004:99–105.PubMedCrossRefGoogle Scholar
  38. 38.
    Mehrabian M, Allayee H, Wong J, et al.: Identification of 5-lipoxygenase as a major gene contributing to atherosclerosis susceptibility in mice. Circ Res 2002, 91:120–126.PubMedCrossRefGoogle Scholar
  39. 39.
    Dwyer JH, Allayee H, Dwyer KM, et al.: Arachidonate 5-lipoxygenase promoter genotype, dietary archidonic acid, and atherosclerosis. N Engl J Med 2004, 350:29–37.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc 2005

Authors and Affiliations

  • Qing Wang
    • 1
  1. 1.Department of Molecular CardiologyLerner Research Institute/ND4-38, Cleveland Clinic FoundationClevelandUSA

Personalised recommendations