Current Atherosclerosis Reports

, Volume 5, Issue 6, pp 437–444 | Cite as

Postprandial lipemia and cardiovascular disease

  • Dianne Hyson
  • John C. Rutledge
  • Lars Berglund


Postprandial lipemia, characterized by a rise in triglyceride-rich lipoproteins after eating, is a dynamic, nonsteady-state condition in which humans spend the majority of time. There are several lines of evidence suggesting that postprandial lipemia increases risk of atherogenesis. Clinical data show a correlation between postprandial lipoproteins and the presence/progression of coronary artery disease and carotid intimal thickness. Mechanistic studies demonstrate that triglyceride-rich lipoprotein remnants may have adverse effects on endothelium and can penetrate into the subendothelial space. Exchange of core lipids between postprandial lipoproteins and low-density lipoprotein (LDL)/high-density lipoprotein (HDL) is increased during prolonged lipemia, resulting in small, dense LDL particles and reduced HDL cholesterol levels. Hemostatic variables, including clotting factors, platelet reactivity, and monocyte cytokine expression, may be increased during postprandial lipemia. Collectively, these data suggest that assessment and treatment of atherosclerosis should include parameters related to postprandial lipemia.


Arterioscler Thromb Vasc Biol Postprandial Lipemia Postprandial Period Postprandial Response Postprandial Lipoprotein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cohn J: Postprandial plasma lipoprotein changes in human subjects of different ages. J Lipid Res 1988, 29:469–479.PubMedGoogle Scholar
  2. 2.
    Havel R: Chylomicron remnants: hepatic receptors and metabolism. Curr Opin Lipidol 1995, 6:312–316.PubMedGoogle Scholar
  3. 3.
    Parks E, Krauss R, Christiansen M, et al.: Effects of a low-fat, high carbohydrate diet on VLDL-triglyceride assembly, production, and clearance. J Clin Invest 1999, 104:1087–1096.PubMedGoogle Scholar
  4. 4.
    Havel R: Triglyceride-rich lipoproteins and atherosclerosis—new perspectives. Am J Clin Nutr 1994, 59:795–799.PubMedGoogle Scholar
  5. 5.
    Karpe F: Postprandial lipoprotein metabolism and atherosclerosis. J Int Med 1999, 246:341–355.CrossRefGoogle Scholar
  6. 6.
    Griffin B: Lipoprotein atherogenicity: an overview of current mechanisms. Proc Nutr Soc 1999, 58:163–169.PubMedCrossRefGoogle Scholar
  7. 7.
    Frayn KN, Shadid S, Hamlani R, et al.: Regulation of fatty acid movement in human adipose tissue in the postabsorptive-to-postprandial transition. Am J Physiol 1994, 266:E308-E317.PubMedGoogle Scholar
  8. 8.
    Parks E, Hellerstein M: Carbohydrate-induced hypertriacylglycerolemia: historical perspective and review of biological mechanisms. Am J Clin Nutr 2000, 71:1–21.Google Scholar
  9. 9.
    Mensenkamp AR, Jong MC, van Goor H, et al.: Apolipoprotein E participates in the regulation of very low density lipoprotein-triglyceride secretion by the liver. J Biol Chem 1999, 274:35711–35718.PubMedCrossRefGoogle Scholar
  10. 10.
    Huang Y, Ji ZS, Brecht WJ, et al.: Overexpression of apolipoprotein E3 in transgenic rabbits causes combined hyperlipidemia by stimulating hepatic VLDL production and impairing VLDL lipolysis. Arterioscler Thromb Vasc Biol 1999, 19:2952–2959.PubMedGoogle Scholar
  11. 11.
    Maugeais C, Tietge UJ, Tsukamoto K, et al.: Hepatic apolipoprotein E expression promotes very low density lipoprotein-apolipoprotein B production in vivo in mice. J Lipid Res 2000, 41:1673–1679.PubMedGoogle Scholar
  12. 12.
    Bjorkegren J, Packard CJ, Hamsten A, et al.: Accumulation of large very low density lipoprotein in plasma during intravenous infusion of a chylomicron-like triglyceride emulsion reflects competition for a common lipolytic pathway. J Lipid Res 1996, 37:76–86.PubMedGoogle Scholar
  13. 13.
    Cohn J, Johnson E, Millar J, et al.: Contribution of apoB-48 and apoB-100 triglyceride-rich lipoproteins (TRL) to postprandial increases in the plasma concentration of TRL triglycerides and retinyl esters. J Lipid Res 1993, 34:2033–2040.PubMedGoogle Scholar
  14. 14.
    Schneeman BO, Kotite L, Todd KM, et al.: Relationships between the responses of triglyceride-rich lipoproteins in blood plasma containing apolipoproteins B-48 and B-100 to a fat-containing meal in normolipidemic humans. Proc Natl Acad Sci U S A 1993, 90:2069–2073.PubMedCrossRefGoogle Scholar
  15. 15.
    Lichtenstein AH, Hachey DL, Millar JS, et al.: Measurement of human apolipoprotein B-48 and B-100 kinetics in triglyceride-rich lipoproteins using [5,5,5-2H3]leucine. J Lipid Res 1992, 33:907–914.PubMedGoogle Scholar
  16. 16.
    Karpe F, Tornvall P, Olivecrona T, et al.: Composition of human low density lipoprotein: effects of postprandial triglyceride-rich lipoproteins, lipoprotein lipase, hepatic lipase and cholesteryl ester transfer protein. Atherosclerosis 1993, 98:33–49.PubMedCrossRefGoogle Scholar
  17. 17.
    Krauss R: Heterogeneity of plasma low-density lipoproteins and atherosclerosis risk. Curr Opin Lipidol 1991, 5:339–349.Google Scholar
  18. 18.
    Lewis GF, O’Meara NM, Soltys PA, et al.: Fasting hypertriglyceridemia in noninsulin-dependent diabetes mellitus is an important predictor of postprandial lipid and lipoprotein abnormalities. J Clin Endocrinol Metab 1991, 72:934–944.PubMedGoogle Scholar
  19. 19.
    Ida-Chen Y, Swami S, Skowronski R, et al.: Differences in postprandial lipemia between patients with normal glucose tolerance and non-insulin dependent diabetes mellitus. J Clin Endocrin 1996, 76:172–177.CrossRefGoogle Scholar
  20. 20.
    Boquist S, Hamsten A, Karpe F, et al.: Insulin and non-esterified fatty acid relations to alimentary lipaemia and plasma concentrations of postprandial triglyceride-rich lipoproteins in healthy middle-aged men. Diabetologia 2000, 43:185–193.PubMedCrossRefGoogle Scholar
  21. 21.
    Lewis G, O’Meara N, Soltys P, et al.: Postprandial lipoprotein metabolism in normal and obese subjects: comparison after vitamin A fat-loading test. J Clin Endocrin Metab 1990, 71:1041–1050.Google Scholar
  22. 22.
    Goldberg, IJ, Vanni-Reyes T, Ramakrishnan R, et al.: Circulating lipoprotein profiles are modulated differently by lipoprotein lipase in obese humans. J Cardiovasc Risk 2000, 7:41–47.PubMedGoogle Scholar
  23. 23.
    Cohen J, Berger G: Effect of glucose ingestion on postprandial lipemia and triglyceride clearance in humans. J Lipid Res 1990, 31:597–602.PubMedGoogle Scholar
  24. 24.
    van Tol A, van der Gaag M, Scheek L, et al.: Changes in postprandial lipoproteins of low and high density caused by moderate alcohol consumption with dinner. Atherosclerosis 1998, 141(suppl 1):S101-S103.PubMedGoogle Scholar
  25. 25.
    Williams C: Dietary interventions affecting chylomicron and chylomicron remnant clearance. Atherosclerosis 1998, 141(suppl 1):S87-S92.PubMedCrossRefGoogle Scholar
  26. 26.
    Tinker L, Parks E, Behr S, et al.: (n-3) fatty acid supplementation in moderately hypertriglyceridemic adults changes postprandial lipid and apolipoprotein B responses to a standardized test meal. J Nutr 1999, 129:1126–1134.PubMedGoogle Scholar
  27. 27.
    Hardman AE: The influence of exercise on postprandial triacylglycerol metabolism. Atherosclerosis 1998, 141(suppl 1):S93-S100.PubMedCrossRefGoogle Scholar
  28. 28.
    Gill J, Mees G, Frayn K, et al.: Moderate exercise, postprandial lipaemia and triacylglycerol clearance. Eur J Clin Invest 2001, 31:201–207.PubMedCrossRefGoogle Scholar
  29. 29.
    Couch SC, Isasi CR, Karmally W, et al.: Predictors of postprandial triacylglycerol response in children: the Columbia University Biomarkers Study. Am J Clin Nutr 2000, 72:1119–1127.PubMedGoogle Scholar
  30. 30.
    van Beek A, de Ruitjer-Heijstek F, Erkelens D, et al.: Menopause is associated with reduced protection from postprandial lipemia. Arterioscler Thromb Vasc Biol 1998, 19:2737–2741.Google Scholar
  31. 31.
    Ossewaarde ME, Dallinga-Thie GM, Bots ML, et al.: Treatment with hormone replacement therapy lowers remnant lipoprotein particles in healthy postmenopausal women: results from a randomized trial. Eur J Clin Invest 2003, 33:376–382.PubMedCrossRefGoogle Scholar
  32. 32.
    Weintraub MS, Eisenberg S, Breslow JL: Dietary fat clearance in normal subjects is regulated by genetic variation in apolipoprotein E. J Clin Invest 1987, 80:1571–1577.PubMedGoogle Scholar
  33. 33.
    Dallongeville J, Tiret L, Visvikis S, et al.: Effect of apo E phenotype on plasma postprandial triglyceride levels in young male adults with and without a familial history of myocardial infarction: the EARS II study. European Atherosclerosis Research Study. Atherosclerosis 1999, 145:381–388.PubMedCrossRefGoogle Scholar
  34. 34.
    Ostos MA, Lopez-Miranda J, Ordovas JM, et al.: Dietary fat clearance is modulated by genetic variation in apolipoprotein A-IV gene locus. J Lipid Res 1998, 39:2493–2500.PubMedGoogle Scholar
  35. 35.
    Lopez-Miranda J, Ordovas JM, Ostos MA, et al.: Dietary fat clearance in normal subjects is modulated by genetic variation at the apolipoprotein B gene locus. Arterioscler Thromb Vasc Biol 1997, 17:1765–1773.PubMedGoogle Scholar
  36. 36.
    Marin C, Lopez-Miranda J, Gomez P, et al.: Effects of the human apolipoprotein A-I promoter G-A mutation on postprandial lipoprotein metabolism. Am J Clin Nutr 2002, 76:319–325.PubMedGoogle Scholar
  37. 37.
    Cohn J: Postprandial lipemia: emerging evidence for atherogenicity of remnant lipoproteins. Can J Cardiol 1998, 14:18B-27B.PubMedGoogle Scholar
  38. 38.
    Patsch J, Miesenbock G, Hopferwieser T, et al.: Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state. Arterioscler Thromb 1992, 12:1336–1345.PubMedGoogle Scholar
  39. 39.
    Gofman J, Lindgren F, Elliot H, et al.: The role of lipids and lipoproteins in atherosclerosis. Science 1950, 111:166–171.PubMedCrossRefGoogle Scholar
  40. 40.
    Zilversmit D: Atherogenesis: a postprandial phenomenon. Circulation 1979, 60:473–485.PubMedGoogle Scholar
  41. 41.
    Groot PH, van Stiphout WA, Krauss XH, et al.: Postprandial lipoprotein metabolism in normolipidemic men with and without coronary artery disease. Arterioscler Thromb 1991, 11:653–662.PubMedGoogle Scholar
  42. 42.
    Meyer E, Westerveld HT, de Ruyter-Meijstek FC, et al.: Abnormal postprandial apolipoprotein B-48 and triglyceride responses in normolipidemic women with greater than 70% stenotic coronary artery disease: a case-control study. Atherosclerosis 1996, 124:221–235.PubMedCrossRefGoogle Scholar
  43. 43.
    Ginsberg HN, Jones J, Blaner WS, et al.: Association of postprandial triglyceride and retinyl palmitate responses with newly diagnosed exercise-induced myocardial ischemia in middle-aged men and women. Arterioscler Thromb Vasc Biol 1995, 15:1829–1838.PubMedGoogle Scholar
  44. 44.
    Boquist S, Ruotolo G, Tang R, et al.: Alimentary lipemia, postprandial triglyceride-rich lipoproteins, and common carotid intima-media thickness in healthy, middle-aged men. Circulation 1999, 100:723–728.PubMedGoogle Scholar
  45. 45.
    Karpe F, de Faire U, Mercuri M, et al.: Magnitude of alimentary lipemia is related to intima-media thickness of the common carotid artery in middle-aged men. Atherosclerosis 1998, 141:307–314.PubMedCrossRefGoogle Scholar
  46. 46.
    Ryu J, Howard G, Craven T, et al.: Postprandial lipemia and carotid atherosclerosis. Stroke 1992, 23:823–828.PubMedGoogle Scholar
  47. 47.
    Uiterwaal C, Grobbee D, Witteman J, et al.: Postprandial triglyceride response in young adult men and familial risk of coronary atherosclerosis. Ann Intern Med 1994, 121:576–583.PubMedGoogle Scholar
  48. 48.
    Tiret L, Gerdes C, Murphy MJ, et al.: Postprandial response to a fat tolerance test in young adults with a paternal history of premature coronary heart disease—the EARS II study (European Atherosclerosis Research Study). Eur J Clin Invest 2000, 30:578–585.PubMedCrossRefGoogle Scholar
  49. 49.
    Spiedel M, Booyse F, Abrams A, et al.: Lipolysed hypertriglyceridemic serum and trigylceride-rich lipoprotein cause lipid accumulation in and are cytotoxic to cultured human endothelial cells. Thromb Res 1990, 48:251–264.CrossRefGoogle Scholar
  50. 50.
    Hennig B, Shasby D, Spector A: Exposure to fatty acid increases human low density lipoprotein transfer across cultured endothelial monolayers. Circ Res 1985, 57:776–780.PubMedGoogle Scholar
  51. 51.
    Rutledge JC, Woo MM, Rezai AA, et al.: Lipoprotein lipase increases lipoprotein binding to the artery wall and increases endothelial layer permeability by formation of lipolysis products. Circ Res 1997, 80:819–828.PubMedGoogle Scholar
  52. 52.
    Yla-Herttuala S, Lipton BA, Rosenfeld ME, et al.: Macrophages and smooth muscle cells express lipoprotein lipase in human and rabbit atherosclerotic lesions. Proc Natl Acad Sci U S A 1991, 88:10143–10147.PubMedCrossRefGoogle Scholar
  53. 53.
    Arbogast B: Purification and identification of very low density lipoprotein toxicity preventing activity. Atherosclerosis 1988, 73:259–267.PubMedCrossRefGoogle Scholar
  54. 54.
    Vogel RA, Corretti MC, Plotnick GD: Effect of a single high-fat meal on endothelial function in healthy subjects. Am J Cardiol 1997, 79:350–354.PubMedCrossRefGoogle Scholar
  55. 55.
    Lundman P, Eriksson M, Schenck-Gustafsson K, et al.: Transient triglyceridemia decreases vascular reactivity in young, healthy men without risk factors for coronary heart disease. Circulation 1997, 96:3266–3268.PubMedGoogle Scholar
  56. 56.
    Kugiyama K, Doi H, Motoyama T, et al.: Association of remnant lipoprotein levels with impairment of endothelium-dependent vasomotor function in human coronary arteries. Circulation 1998, 97:2519–2526.PubMedGoogle Scholar
  57. 57.
    Marchesi S, Lupattelli G, Siepi D, et al.: Oral L-arginine administration attenuates postprandial endothelial dysfunction in young healthy males. J Clin Pharm Ther 2001, 26:343–349.PubMedCrossRefGoogle Scholar
  58. 58.
    Ross R: Atherosclerosis—an inflammatory disease. N Engl J Med 1999, 340:115–126.PubMedCrossRefGoogle Scholar
  59. 59.
    Nordestgaard B, Wootton R, Lewis B: Selective retention of VLDL, IDL, and LDL in the arterial intima of genetically hyperlipidemic rabbits in vivo: molecular size as a determinant of fractional loss from the intima-inner media. Arterioscler Thromb 1995, 15:534–542.Google Scholar
  60. 60.
    Simionescu M, Simionescu N: Endothelial transport of macromolecules: transcytosis and endocytosis: a look from cell biology. Cell Biol Rev 1991, 25:5–78.PubMedGoogle Scholar
  61. 61.
    Simionescu M, Simionescu N: Proatherosclerotic events—pathobiochemical changes occurring in arterial wall before monocyte migration. FASEB J 1993, 7:1359–1366.PubMedGoogle Scholar
  62. 62.
    Mamo J, Wheeler J: Chylomicrons or their remnants penetrate rabbit thoracic aorta as efficiently as do smaller macromolecules, including low-density lipoprotein, high density lipoprotein and albumin. Coronary Artery Dis 1994, 5:695–705.CrossRefGoogle Scholar
  63. 63.
    Proctor S, Mamo J: Retention of fluorescent-labeled chylomicron remnants within the intima of the arterial wall—evidence that plaque cholesterol may be derived from postprandial lipoproteins. Eur J Clin Invest 1998, 28:497–503.PubMedCrossRefGoogle Scholar
  64. 64.
    Shaikh M, Wootton R, Nordestgaard B, et al.: Quantitative studies of transfer in vivo of low density, Sf 12-60 and Sf 60-400 lipoproteins between plasma and arterial intima in humans. Arteriscler Thromb 1991, 11:569–577.Google Scholar
  65. 65.
    Rapp J, Lespine A, Hamilton R, et al.: Triglyceride-rich lipoproteins isolated by selected-affinity anti-apoprotein B immunosorption from human atherosclerotic plaque. Arterioscler Thromb 1994, 14:1767–1774.PubMedGoogle Scholar
  66. 66.
    Gianturco S, Bradley W: Pathophysiology of triglyceride-rich lipoproteins in atherothrombosis: cellular aspects. Clin Cardiol 1999, 22:II-7–II-14.CrossRefGoogle Scholar
  67. 67.
    Mann CJ, Yen FT, Grant AM, et al.: Mechanism of plasma cholesteryl ester transfer in hypertriglyceridemia. J Clin Invest 1991, 88:2059–2066.PubMedCrossRefGoogle Scholar
  68. 68.
    Austin M, King M, Vranizan K, et al.: Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary artery disease. Arterioscler Thromb 1990, 82:495–506.Google Scholar
  69. 69.
    Diwadkar V, Anderson J, Bridges S, et al.: Postprandial low-density lipoproteins in type 2 diabetes are oxidized more extensively than fasting diabetes and control samples. PSEBM 1999, 222:178–184.CrossRefGoogle Scholar
  70. 70.
    Miller GJ: Postprandial lipaemia and haemostatic factors. Atherosclerosis 1998, 141(suppl 1):S47-S51.PubMedCrossRefGoogle Scholar
  71. 71.
    Meade T, Mellows S, Brozovic M, et al.: Haemostatic function and ischaemic heart disease: principal results of the Northwick Park Heart Study. Lancet 1986, 6:533–537.CrossRefGoogle Scholar
  72. 72.
    Nordoy A, Strom E, Gjesdal K: The effect of alimentary hyperlipidaemia and primary hypertriglyceridaemia on platelets in man. Scan J Haematol 1974, 12:329–340.Google Scholar
  73. 73.
    Jakubowski J, Ardlie N, Chesterman C, et al.: Acute postprandial lipaemia does not influence the in vivo activity of human platelets. Thromb Res 1985, 39:725–732.PubMedCrossRefGoogle Scholar
  74. 74.
    Fuhrman B, Brook J, Aviram M: Increased platelet aggregation during alimentary hyperlipemia in normal and hypertriglyceridemic subjects. Ann Nutr Metab 1986, 30:250–260.PubMedCrossRefGoogle Scholar
  75. 75.
    Broijersen A, Karpe F, Hamsten A, et al.: Alimentary lipemia enhances the membrane expression of platelet P-selectin without affecting other markers of platelet activation. Atherosclerosis 1998, 137:107–113.PubMedCrossRefGoogle Scholar
  76. 76.
    Hyson DA, Paglieroni TG, Wun T, et al.: Postprandial lipemia is associated with platelet and monocyte activation and increased monocyte cytokine expression in normolipemic men. Clin Applied Thromb Hemost 2002, 8:147–155.Google Scholar

Copyright information

© Current Science Inc 2003

Authors and Affiliations

  • Dianne Hyson
    • 1
  • John C. Rutledge
    • 1
  • Lars Berglund
    • 1
  1. 1.Department of MedicineUniversity of CaliforniaSacramentoUSA

Personalised recommendations