Current Atherosclerosis Reports

, Volume 3, Issue 5, pp 412–416 | Cite as

Platelet-endothelial interactions in atherosclerosis

  • Bruce S. Sachais


The pathogenesis of atherosclerosis, the leading cause of morbidity and mortality in the United States, is multifactorial. Many factors that have been shown to influence the development of atherosclerosis also affect the function of the endothelium through soluble or cell-cell interactions. Among these, interactions between platelets and endothelial cells have only recently begun to receive systematic study. This article reviews recent evidence showing how the interaction between platelets and endothelial cells may play a important role in the pathogenesis of atherosclerosis, suggesting an underappreciated potential locus for pharmacologic intervention.


Human Umbilical Vein Endothelial Cell Platelet Activate Factor Nimesulide Platelet Adhesion Arterioscler Thromb Vasc Biol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Cines DB, Pollak ES, Buck CA, et al.: Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 1998, 91:3527–3561.PubMedGoogle Scholar
  2. 2.
    Shimokawa H: Primary endothelial dysfunction: atherosclerosis. J Mol Cell Cardiol 1999, 31:23–37.PubMedCrossRefGoogle Scholar
  3. 3.
    Van Ijzendoorn SC, Heemskerk JW, Reutelingsperger CP: Interactions between endothelial cells and blood platelets. Endothelium 1995, 3:81–98.Google Scholar
  4. 4.
    Rosen P, Schwippert B, Tschope D: Adhesive proteins in platelet-endothelial interactions. Eur J Clin Invest 1994, 24:21–24.PubMedGoogle Scholar
  5. 5.
    Hawiger J: Platelet-vessel interactions: Platelet adhesion and aggregation. Atherosclerosis Rev 1990, 21:page numbersGoogle Scholar
  6. 6.
    Gawaz M, Neumann FJ, Dickfeld T, et al.: Activated platelets induce monocyte chemotactic protein-1 secretion and surface expression of intercellular adhesion molecule-1 on endothelial cells [see comments]. Circulation 1998, 98:1164–1171.PubMedGoogle Scholar
  7. 7.
    Secondary prevention of vascular disease by prolonged antiplatelet treatment. Antiplatelet Trialists’ Collaboration. Br Med J (Clin Res Ed) 1988, 296:320–331.Google Scholar
  8. 8.
    Pratico D, Tillmann C, Zhang ZB, et al.: Acceleration of atherogenesis by COX-1-dependent prostanoid formation in low density lipoprotein receptor knockout mice. Proc Natl Acad Sci U S A 2001, 98:3358–3363.PubMedCrossRefGoogle Scholar
  9. 9.
    Pratico D, Cyrus T, Li H, FitzGerald GA: Endogenous biosynthesis of thromboxane and prostacyclin in 2 distinct murine models of atherosclerosis. Blood 2000, 96:3823–3826.PubMedGoogle Scholar
  10. 10.
    Johnson RC, Chapman SM, Dong ZM, et al.: Absence of P-selectin delays fatty streak formation in mice. J Clin Invest 1997, 99:1037–1043.PubMedGoogle Scholar
  11. 11.
    Gawaz M, Neumann FJ, Dickfeld T, et al.: Vitronectin receptor (alpha(v)beta3) mediates platelet adhesion to the luminal aspect of endothelial cells: implications for reperfusion in acute myocardial infarction. Circulation 1997, 96:1809–1818.PubMedGoogle Scholar
  12. 12.
    Ihrig M, Dangler CA, Fox JG: Mice lacking inducible nitric oxide synthase develop spontaneous hypercholesterolaemia and aortic atheromas. Atherosclerosis 2001, 156:103–107.PubMedCrossRefGoogle Scholar
  13. 13.
    Marcus AJ, Broekman MJ, Drosopoulos JH, et al.: The endothelial cell ecto-ADPase responsible for inhibition of platelet function is CD39. J Clin Invest 1997, 99:1351–1360.PubMedCrossRefGoogle Scholar
  14. 14.
    Gayle RB 3rd, Maliszewski CR, Gimpel SD, et al.: Inhibition of platelet function by recombinant soluble ecto-ADPase/CD39. J Clin Invest 1998, 101:1851–1859.PubMedGoogle Scholar
  15. 15.
    Marcus AJ, Safier LB, Hajjar KA, et al.: Inhibition of platelet function by an aspirin-insensitive endothelial cell ADPase. Thromboregulation by endothelial cells. J Clin Invest 1991, 88:1690–1696.PubMedGoogle Scholar
  16. 16.
    Drosopoulos JH, Broekman MJ, Islam N, et al.: Site-directed mutagenesis of human endothelial cell ecto-ADPase/soluble CD39: requirement of glutamate 174 and serine 218 for enzyme activity and inhibition of platelet recruitment. Biochemistry 2000, 39:6936–6943.PubMedCrossRefGoogle Scholar
  17. 17.
    Ley K: Functions of selectins. Results Probl Cell Differ 2001, 33:177–200.PubMedGoogle Scholar
  18. 18.
    Bullard DC, Kunkel EJ, Kubo H, et al.: Infectious susceptibility and severe deficiency of leukocyte rolling and recruitment in E-selectin and P-selectin double mutant mice. J Exp Med 1996, 183:2329–2336.PubMedCrossRefGoogle Scholar
  19. 19.
    Frenette PS, Mayadas TN, Rayburn H, et al.: Susceptibility to infection and altered hematopoiesis in mice deficient in both P- and E-selectins. Cell 1996, 84:563–574.PubMedCrossRefGoogle Scholar
  20. 20.
    Frenette PS, Johnson RC, Hynes RO, Wagner DD: Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P-selectin. Proc Natl Acad Sci U S A 1995, 92:7450–7454.PubMedCrossRefGoogle Scholar
  21. 21.
    Vora DK, Fang ZT, Liva SM, et al.: Induction of P-selectin by oxidized lipoproteins. Separate effects on synthesis and surface expression. Circ Res 1997, 80:810–818.PubMedGoogle Scholar
  22. 22.
    Gebuhrer V, Murphy JF, Bordet JC, et al.: Oxidized low-density lipoprotein induces the expression of P-selectin (GMP140/PADGEM/CD62) on human endothelial cells. Biochem J 1995, 306:293–298.PubMedGoogle Scholar
  23. 23.
    Zhao SP, Xu DY: Oxidized lipoprotein(a) enhanced the expression of P-selectin in cultured human umbilical vein endothelial cells. Thromb Res 2000, 100:501–510.PubMedCrossRefGoogle Scholar
  24. 24.
    Johnson-Tidey RR, McGregor JL, Taylor PR, Poston RN: Increase in the adhesion molecule P-selectin in endothelium overlying atherosclerotic plaques. Coexpression with intercellular adhesion molecule-1. Am J Pathol 1994, 144:952–961.PubMedGoogle Scholar
  25. 25.
    Zwaginga JJ, Torres HI, Lammers J, et al.: Minimal platelet deposition and activation in models of injured vessel wall ensure optimal neutrophil adhesion under flow conditions. Arterioscler Thromb Vasc Biol 1999, 19:1549–1554.PubMedGoogle Scholar
  26. 26.
    Kuijper PH, Gallardo Torres HI, Houben LA, et al.: P-selectin and MAC-1 mediate monocyte rolling and adhesion to ECM-bound platelets under flow conditions. J Leukocyte Biol 1998, 64:467–473.PubMedGoogle Scholar
  27. 27.
    Manka D, Collins RG, Ley K, et al.: Absence of P-selectin, but not intercellular adhesion molecule-1, attenuates neointimal growth after arterial injury in apolipoprotein e-deficient mice. Circulation 2001, 103:1000–1005.PubMedGoogle Scholar
  28. 28.
    Collins RG, Velji R, Guevara NV, et al.: P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J Exp Med 2000, 191:189–194.PubMedCrossRefGoogle Scholar
  29. 29.
    Kolpakov V, Polishchuk R, Bannykh S, et al.: Atherosclerosis-prone branch regions in human aorta: microarchitecture and cell composition of intima. Atherosclerosis 1996, 122:173–189.PubMedCrossRefGoogle Scholar
  30. 30.
    Munro JM, Cotran RS: The pathogenesis of atherosclerosis: atherogenesis and inflammation. Lab Invest 1988, 58:249–261.PubMedGoogle Scholar
  31. 31.
    Ravensbergen J, Ravensbergen JW, Krijger JK, et al.: Localizing role of hemodynamics in atherosclerosis in several human vertebrobasilar junction geometries. Arterioscler Thromb Vasc Biol 1998, 18:708–716.PubMedGoogle Scholar
  32. 32.
    Malek AM, Alper SL, Izumo S: Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999, 282:2035–2042.PubMedCrossRefGoogle Scholar
  33. 33.
    Laufs U, La Fata V, Plutzky J, Liao JK: Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 1998, 97:1129–1135.PubMedGoogle Scholar
  34. 34.
    Laufs U, Fata VL, Liao JK: Inhibition of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase blocks hypoxia-mediated down-regulation of endothelial nitric oxide synthase. J Biol Chem 1997, 272:31725–31729.PubMedCrossRefGoogle Scholar
  35. 35.
    Laufs U, Liao JK: Direct vascular effects of HMG-CoA reductase inhibitors. Trends Cardiovasc Med 2000, 10:143–148.PubMedCrossRefGoogle Scholar
  36. 36.
    Rosenson RS, Tangney CC: Antiatherothrombotic properties of statins: implications for cardiovascular event reduction. JAMA 1998, 279:1643–1650.PubMedCrossRefGoogle Scholar
  37. 37.
    Schwartz GG, Olsson AG, Ezekowitz MD, et al.: Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: the MIRACL study: a randomized controlled trial. JAMA 2001, 285:1711–1718.PubMedCrossRefGoogle Scholar
  38. 38.
    van Nieuw Amerongen GP, Vermeer MA, Negre-Aminou P, et al.: Simvastatin improves disturbed endothelial barrier function. Circulation 2000, 102:2803–2809.PubMedGoogle Scholar
  39. 39.
    Shiomi M, Ito T, Hiroichi Y, Enomoto M: Fibromuscular cap composition is important for the stability of established atherosclerotic plaques in mature WHHL rabbits treated with statins. Atherosclerosis 2001, 157:75–84.PubMedCrossRefGoogle Scholar
  40. 40.
    Sawamura T, Kume N, Aoyama T, et al.: An endothelial receptor for oxidized low-density lipoprotein. Nature 1997, 386:73–77.PubMedCrossRefGoogle Scholar
  41. 41.
    Moriwaki H, Kume N, Kataoka H, et al.: Expression of lectin-like oxidized low density lipoprotein receptor-1 in human and murine macrophages: upregulated expression by TNF-alpha. FEBS Lett 1998, 440:29–32.PubMedCrossRefGoogle Scholar
  42. 42.
    Yoshida H, Kondratenko N, Green S, et al.: Identification of the lectin-like receptor for oxidized low-density lipoprotein in human macrophages and its potential role as a scavenger receptor. Biochem J 1998, 334:9–13.PubMedGoogle Scholar
  43. 43.
    Li DY, Zhang YC, Philips MI, et al.: Upregulation of endothelial receptor for oxidized low-density lipoprotein (LOX-1) in cultured human coronary artery endothelial cells by angiotensin II type 1 receptor activation. Circ Res 1999, 84:1043–1049.PubMedGoogle Scholar
  44. 44.
    Murase T, Kume N, Korenaga R, et al.: Fluid shear stress transcriptionally induces lectin-like oxidized LDL receptor-1 in vascular endothelial cells. Circ Res 1998, 83:328–333.PubMedGoogle Scholar
  45. 45.
    Kume N, Murase T, Moriwaki H, et al.: Inducible expression of lectin-like oxidized LDL receptor-1 in vascular endothelial cells. Circ Res 1998, 83:322–327.PubMedGoogle Scholar
  46. 46.
    Chen M, Kakutani M, Minami M, et al.: Increased expression of lectin-like oxidized low density lipoprotein receptor-1 in initial atherosclerotic lesions of Watanabe heritable hyperlipidemic rabbits. Arterioscler Thromb Vasc Biol 2000, 20:1107–1115.PubMedGoogle Scholar
  47. 47.
    Kataoka H, Kume N, Miyamoto S, et al.: Expression of lectin-like oxidized low-density lipoprotein receptor-1 in human atherosclerotic lesions. Circulation 1999, 99:3110–3117.PubMedGoogle Scholar
  48. 48.
    Kakutani M, Masaki T, Sawamura T: A platelet-endothelium interaction mediated by lectin-like oxidized low-density lipoprotein receptor-1. Proc Natl Acad Sci U S A 2000, 97:360–364.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc. 2001

Authors and Affiliations

  • Bruce S. Sachais
    • 1
  1. 1.Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations