Current Allergy and Asthma Reports

, Volume 6, Issue 5, pp 384–389 | Cite as

Immune dysregulation in atopic dermatitis



Atopic dermatitis is a chronic inflammatory skin disease that causes significant morbidity in affected individuals. It is characterized by dysregulated immune responses that consist of an increased systemic Th2 response and a combination of Th2 and Th1 responses in the skin lesions. In this article, we review factors that contribute to these abnormal responses, including key effector cells of the immune system, chemokines, defective skin barrier, genetic predisposition, and environmental triggers. Understanding these pathomechanisms may improve our current therapies for atopic dermatitis.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Homey B, Steinhoff M, Ruzicka T, Leung DYM: Cytokines and chemokines orchestrate atopic skin inflammation. J Allergy Clin Immunol 2006, 118:178–189. An excellent up-to-date review of mechanisms of atopic skin inflammation.PubMedCrossRefGoogle Scholar
  2. 2.
    Spergel JM, Mizoguchi E, Brewer JP, et al.: Epicutaneous sensitization with protein antigen induces localized allergic dermatitis and hyperresponsiveness to methacholine after single exposure to aerosolized antigen in mice. J Clin Invest 1998, 101:1614–1622.PubMedGoogle Scholar
  3. 3.
    Novak N, Kruse S, Kraft S, et al.: Dichotomic nature of atopic dermatitis reflected by combined analysis of monocyte immunophenotyping and single nucleotide polymorphisms of the interleukin-4/interleukin-13 receptor gene: the dichotomy of extrinsic and intrinsic atopic dermatitis. J Invest Dermatol 2002, 119:870–875.PubMedCrossRefGoogle Scholar
  4. 4.
    Seki Y, Inoue H, Nagata N, et al.: SOCS-3 regulates onset and maintenance of T(H)2-mediated allergic responses. Nat Med 2003, 9:1047–1054.PubMedCrossRefGoogle Scholar
  5. 5.
    Hamid Q, Boguniewicz M, Leung DY: Differential in situ cytokine gene expression in acute versus chronic atopic dermatitis. J Clin Invest 1994, 94:870–876.PubMedGoogle Scholar
  6. 6.
    Clark RA, Chong B, Mirchandani N, et al.: The vast majority of CLA+ T cells are resident in normal skin. J Immunol 2006, 176:4431–4439. This study provides crucial information on CLA+ memory T cells in normal skin; this information will be useful for future comparison of these cells in atopic dermatitis.PubMedGoogle Scholar
  7. 7.
    Semper AE, Heron K, Woollard AC, et al.: Surface expression of Fc epsilon RI on Langerhans’ cells of clinically uninvolved skin is associated with disease activity in atopic dermatitis, allergic asthma, and rhinitis. J Allergy Clin Immunol 2003, 112:411–419.PubMedCrossRefGoogle Scholar
  8. 8.
    Jeong CW, Ahn KS, Rho NK, et al.: Differential in vivo cytokine mRNA expression in lesional skin of intrinsic vs. extrinsic atopic dermatitis patients using semiquantitative RT-PCR. Clin Exp Allergy 2003, 33:1717–1724.PubMedCrossRefGoogle Scholar
  9. 9.
    Herrick CA, Xu L, McKenzie AN, et al.: IL-13 is necessary, not simply sufficient, for epicutaneously induced Th2 responses to soluble protein antigen. J Immunol 2003, 170:2488–2495. This study illustrates the essential and independent role of IL-13 in Th2 responses.PubMedGoogle Scholar
  10. 10.
    Purwar R, Werfel T, Wittmann M: IL-13-stimulated human keratinocytes preferentially attract CD4(+)CCR4(+) T cells: possible role in atopic dermatitis. J Invest Dermatol 2006, 126:1043–1051.PubMedCrossRefGoogle Scholar
  11. 11.
    Reich K, Hugo S, Middel P, et al.: Evidence for a role of Langerhans cell-derived IL-16 in atopic dermatitis. J Allergy Clin Immunol 2002, 109:681–687.PubMedCrossRefGoogle Scholar
  12. 12.
    Kakinuma T, Nakamura K, Wakugawa M, et al.: Thymus and activation-regulated chemokine in atopic dermatitis: Serum thymus and activation-regulated chemokine level is closely related with disease activity. J Allergy Clin Immunol 2001, 107:535–541.PubMedCrossRefGoogle Scholar
  13. 13.
    Rho NK, Kim WS, Lee DY, et al.: Immunophenotyping of inflammatory cells in lesional skin of the extrinsic and intrinsic types of atopic dermatitis. Br J Dermatol 2004, 151:119–125.PubMedCrossRefGoogle Scholar
  14. 14.
    Toda M, Leung DY, Molet S, et al.: Polarized in vivo expression of IL-11 and IL-17 between acute and chronic skin lesions. J Allergy Clin Immunol 2003, 111:875–881.PubMedCrossRefGoogle Scholar
  15. 15.
    Kakinuma T, Saeki H, Tsunemi Y, et al.: Increased serum cutaneous T cell-attracting chemokine (CCL27) levels in patients with atopic dermatitis and psoriasis vulgaris. J Allergy Clin Immunol 2003, 111:592–597.PubMedCrossRefGoogle Scholar
  16. 16.
    Vestergaard C, Johansen C, Christensen U, et al.: TARC augments TNF-alpha-induced CTACK production in keratinocytes. Exp Dermatol 2004, 13:551–557.PubMedCrossRefGoogle Scholar
  17. 17.
    Homey B, Alenius H, Muller A, et al.: CCL27-CCR10 interactions regulate T cell-mediated skin inflammation. Nat Med 2002, 8:157–165.PubMedCrossRefGoogle Scholar
  18. 18.
    Klunker S, Trautmann A, Akdis M, et al.: A second step of chemotaxis after transendothelial migration: keratinocytes undergoing apoptosis release IFN-gamma-inducible protein 10, monokine induced by IFN-gamma, and IFN-gammainducible alpha-chemoattractant for T cell chemotaxis toward epidermis in atopic dermatitis. J Immunol 2003, 171:1078–1084.PubMedGoogle Scholar
  19. 19.
    Echigo T, Hasegawa M, Shimada Y, et al.: Expression of fractalkine and its receptor, CX3CR1, in atopic dermatitis: possible contribution to skin inflammation. J Allergy Clin Immunol 2004, 113:940–948.PubMedCrossRefGoogle Scholar
  20. 20.
    Thepen T, Langeveld-Wildschut EG, Bihari IC, et al.: Biphasic response against aeroallergen in atopic dermatitis showing a switch from an initial TH2 response to a TH1 response in situ: an immunocytochemical study. J Allergy Clin Immunol 1996, 97:828–837.PubMedCrossRefGoogle Scholar
  21. 21.
    Trautmann A, Akdis M, Kleemann D, et al.: T cell-mediated Fas-induced keratinocyte apoptosis plays a key pathogenetic role in eczematous dermatitis. J Clin Invest 2000, 106:25–35.PubMedCrossRefGoogle Scholar
  22. 22.
    Savinko T, Lauerma A, Lehtimaki S, et al.: Topical superantigen exposure induces epidermal accumulation of CD8+ T cells, a mixed Th1/Th2-type dermatitis and vigorous production of IgE antibodies in the murine model of atopic dermatitis. J Immunol 2005, 175:8320–8326.PubMedGoogle Scholar
  23. 23.
    Gombert M, Dieu-Nosjean MC, Winterberg F, et al.: CCL1-CCR8 interactions: an axis mediating the recruitment of T cells and Langerhans-type dendritic cells to sites of atopic skin inflammation. J Immunol 2005, 174:5082–5091.PubMedGoogle Scholar
  24. 24.
    Chatila TA: Role of regulatory T cells in human diseases. J Allergy Clin Immunol 2005, 116:949–959.PubMedCrossRefGoogle Scholar
  25. 25.
    Lin W, Truong N, Grossman WJ, et al.: Allergic dysregulation and hyperimmunoglobulinemia E in Foxp3 mutant mice. J Allergy Clin Immunol 2005, 116:1106–1115.PubMedCrossRefGoogle Scholar
  26. 26.
    Verhagen J, Akdis M, Traidl-Hoffmann C, et al.: Absence of T-regulatory cell expression and function in atopic dermatitis skin. J Allergy Clin Immunol 2006, 117:176–183. T-regulatory cells are important in regulating immune responses. This paper provides a novel mechanism for the dysregulated cutaneous inflammation in AD.PubMedCrossRefGoogle Scholar
  27. 27.
    Goleva E, Cardona ID, Ou LS, Leung DY: Factors that regulate naturally occurring T regulatory cell-mediated suppression. J Allergy Clin Immunol 2005, 116:1094–1100.PubMedCrossRefGoogle Scholar
  28. 28.
    Novak N, Valenta R, Bohle B, et al.: FcepsilonRI engagement of Langerhans cell-like dendritic cells and inflammatory dendritic epidermal cell-like dendritic cells induces chemotactic signals and different T-cell phenotypes in vitro. J Allergy Clin Immunol 2004, 113:949–957. Dendritic cells are crucial in the initiation of immune responses. This paper shows the contribution of different dendritic cell subtypes in Th2- and Th1-mediated inflammation of atopic dermatitis lesions.PubMedCrossRefGoogle Scholar
  29. 29.
    Kerschenlohr K, Decard S, Przybilla B, Wollenberg A: Atopy patch test reactions show a rapid influx of inflammatory dendritic epidermal cells in patients with extrinsic atopic dermatitis and patients with intrinsic atopic dermatitis. J Allergy Clin Immunol 2003, 111:869–874.PubMedCrossRefGoogle Scholar
  30. 30.
    Novak N, Allam JP, Hagemann T, et al.: Characterization of FcepsilonRI-bearing CD123 blood dendritic cell antigen-2 plasmacytoid dendritic cells in atopic dermatitis. J Allergy Clin Immunol 2004, 114:364–370.PubMedCrossRefGoogle Scholar
  31. 31.
    Wollenberg A, Wagner M, Gunther S, et al.: Plasmacytoid dendritic cells: a new cutaneous dendritic cell subset with distinct role in inflammatory skin diseases. J Invest Dermatol 2002, 119:1096–1102.PubMedCrossRefGoogle Scholar
  32. 32.
    Ong PY, Ohtake T, Brandt C, et al.: Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 2002, 347:1151–1160.PubMedCrossRefGoogle Scholar
  33. 33.
    Howell MD, Novak N, Bieber T, et al.: Interleukin-10 downregulates antimicrobial peptide expression in atopic dermatitis. J Invest Dermatol 2005, 125:738–745. This paper shows a novel mechanism for the decreased expression of antimicrobial peptides in atopic dermatitis lesions.PubMedCrossRefGoogle Scholar
  34. 34.
    Howell MD, Wollenberg A, Gallo RL, et al.: Cathelicidin deficiency predisposes to eczema herpeticum. J Allergy Clin Immunol 2006, 117:836–841.PubMedCrossRefGoogle Scholar
  35. 35.
    Howell MD, Gallo RL, Boguniewicz M, et al.: Cytokine milieu of atopic dermatitis skin subverts the innate immune response to vaccinia virus. Immunity 2006, 24:341–348.PubMedCrossRefGoogle Scholar
  36. 36.
    Soumelis V, Reche PA, Kanzler H, et al.: Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol 2002, 3:673–680.PubMedCrossRefGoogle Scholar
  37. 37.
    Pastore S, Fanales-Belasio E, Albanesi C, et al.: Granulocyte macrophage colony-stimulating factor is overproduced by keratinocytes in atopic dermatitis. Implications for sustained dendritic cell activation in the skin. J Clin Invest 1997, 99:3009–3017.PubMedGoogle Scholar
  38. 38.
    Cork MK, Robinson DA, Vasilopoulos Y, et al.: New perspectives on epidermal barrier dysfunction in atopic dermatitis: gene-environment interactions. J Allergy Clin Immunol 2006, In press.Google Scholar
  39. 39.
    Jensen JM, Folster-Holst R, Baranowsky A, et al.: Impaired sphingomyelinase activity and epidermal differentiation in atopic dermatitis. J Invest Dermatol 2004, 122:1423–1431.PubMedCrossRefGoogle Scholar
  40. 40.
    Larsen FS, Holm NV, Henningsen K: Atopic dermatitis. A genetic-epidemiologic study in a population-based twin sample. J Am Acad Dermatol 1986, 15:487–494.PubMedCrossRefGoogle Scholar
  41. 41.
    Morar N, Willis-Owen SA, Moffatt MF, Cookson WO: The genetics of atopic dermatitis. J Allergy Clin Immunol 2006, In press. An outstanding update on the genetics of AD.Google Scholar
  42. 42.
    Palmer CN, Irvine AD, Terron-Kwiatkowski A, et al.: Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 2006, 38:441–446.PubMedCrossRefGoogle Scholar
  43. 43.
    Mothes N, Niggemann B, Jenneck C, et al.: The cradle of IgE autoreactivity in atopic eczema lies in early infancy. J Allergy Clin Immunol 2005, 116:706–709.PubMedCrossRefGoogle Scholar
  44. 44.
    Werfel T, Breuer K, Rueff F, et al.: Usefulness of specific immunotherapy in patients with atopic dermatitis and allergic sensitization to house dust mites: a multi-centre, randomized, dose-response study. Allergy 2006, 61:202–205.PubMedCrossRefGoogle Scholar
  45. 45.
    Pivarcsi A, Homey B: Chemokine networks in atopic dermatitis: traffic signals of disease. Curr Allergy Asthma Rep 2005, 5:284–290.PubMedCrossRefGoogle Scholar
  46. 46.
    Sonkoly E, Muller A, Lauerma AI, et al.: IL-31: a new link between T cells and pruritus in atopic skin inflammation. J Allergy Clin Immunol 2006, 117:411–417. This study illustrates how staphylococcal superantigen upregulates the expression of IL-31, a newly-described Th2 cytokine that induces pruritus in atopic dermatitis skin.PubMedCrossRefGoogle Scholar
  47. 47.
    Bilsborough J, Leung DY, Maurer M, et al.: IL-31 is associated with cutaneous lymphocyte antigen-positive skin homing T cells in patients with atopic dermatitis. J Allergy Clin Immunol 2006, 117:418–425. This study shows that IL-31 is associated with CLA+ T cells and is overexpressed in atopic dermatitis lesions.PubMedCrossRefGoogle Scholar
  48. 48.
    Schmid-Grendelmeier P, Fluckiger S, Disch R, et al.: IgE-mediated and T cell-mediated autoimmunity against manganese superoxide dismutase in atopic dermatitis. J Allergy Clin Immunol 2005, 115:1068–1075. An important study illustrating how Malassezia may contribute to autoimmune reactions in atopic skin.PubMedCrossRefGoogle Scholar
  49. 49.
    Fonacier L, Spergel J, Charlesworth EN, et al.: Report of the Topical Calcineurin Inhibitor Task Force of the American College of Allergy, Asthma and Immunology and the American Academy of Allergy, Asthma and Immunology. J Allergy Clin Immunol 2005, 115:1249–1253. An evaluation of the safety of topical calcineurin inhibitors.PubMedCrossRefGoogle Scholar
  50. 50.
    Leung DY, Boguniewicz M, Howell MD, et al.: New insights into atopic dermatitis. J Clin Invest 2004, 113:651–657.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc 2006

Authors and Affiliations

  1. 1.Department of PediatricsNational Jewish Medical and Research CenterDenverUSA

Personalised recommendations