Advertisement

Exosomes in Allergic Airway Diseases

  • K. P. Hough
  • J. S. DeshaneEmail author
Basic and Applied Science (I Lewkowich, Section Editor)
  • 136 Downloads
Part of the following topical collections:
  1. Topical Collection on Basic and Applied Science

Abstract

Purpose of Review

This review will cover what is known regarding exosomes and allergy, and furthermore discuss novel mechanism of exosome-mediated immune modulation and metabolic regulation via the transfer of mitochondria.

Recent Findings

Exosomes are nano-sized extracellular vesicles (EVs) derived from the endosome that play a direct role in governing physiological and pathological conditions by transferring bioactive cargo such as proteins, enzymes, nucleic acids (miRNA, mRNA, DNA), and metabolites. Recent evidence suggest that exosomes may signal in autocrine but, most importantly, in paracrine and endocrine manner, being taken up by neighboring cells or carried to distant sites. Exosomes also mediate immunogenic responses, such as antigen presentation and inflammation. In asthma and allergy, exosomes facilitate cross-talk between immune and epithelial cells, and drive site-specific inflammation through the generation of pro-inflammatory mediators like leukotrienes. Recent studies suggest that myeloid cell-generated exosomes transfer mitochondria to lymphocytes.

Summary

Exosomes are nano-sized mediators of the immune system which can modulate responses through antigen presentation, and the transfer of pro- and anti-inflammatory mediators. In addition to conventional mechanisms of immune modulation, exosomes may act as a novel courier of functional mitochondria that is capable of modulating the recipient cells bioenergetics, resulting in altered cellular responses. The transfer of mitochondria and modulation of bioenergetics may result in immune activation or dampening depending on the context.

Keywords

Exosomes Asthma Allergy Extracellular vesicles Mito-exosomes MDRCs 

Notes

Authors’ Contributions

KPH and JSD outlined the review and together drafted and completed the manuscript.

Funding Information

The study was funded by the following funding sources: R01HL128502, P01HL114470, FAMRI YCSA 2010, and Parker B Francis Foundation.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 2008;8(3):183–92.  https://doi.org/10.1038/nri2254.CrossRefPubMedGoogle Scholar
  2. 2.
    Barnes PJ. The cytokine network in asthma and chronic obstructive pulmonary disease. J Clin Invest. 2008;118(11):3546–56.  https://doi.org/10.1172/JCI36130.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Medoff BD, Thomas SY, Luster AD. T cell trafficking in allergic asthma: the ins and outs. Annu Rev Immunol. 2008;26:205–32.  https://doi.org/10.1146/annurev.immunol.26.021607.090312.CrossRefPubMedGoogle Scholar
  4. 4.
    Irvin C, Zafar I, Good J, Rollins D, Christianson C, Gorska MM, et al. Increased frequency of dual-positive TH2/TH17 cells in bronchoalveolar lavage fluid characterizes a population of patients with severe asthma. J Allergy Clin Immunol. 2014;134(5):1175–1186.e7.  https://doi.org/10.1016/j.jaci.2014.05.038.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hammad H, Lambrecht BN. Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat Rev Immunol. 2008;8(3):193–204.  https://doi.org/10.1038/nri2275.CrossRefPubMedGoogle Scholar
  6. 6.
    Holgate ST. Innate and adaptive immune responses in asthma. Nat Med. 2012;18(5):673–83.  https://doi.org/10.1038/nm.2731.CrossRefPubMedGoogle Scholar
  7. 7.
    Wang Y, Jin TH, Farhana A, Freeman J, Estell K, Zmijewski JW, et al. Exposure to cigarette smoke impacts myeloid-derived regulatory cell function and exacerbates airway hyper-responsiveness. Lab Investig. 2014;94(12):1312–25.  https://doi.org/10.1038/labinvest.2014.126.CrossRefPubMedGoogle Scholar
  8. 8.
    Deshane J, Zmijewski JW, Luther R, Gaggar A, Deshane R, Lai JF, et al. Free radical-producing myeloid-derived regulatory cells: potent activators and suppressors of lung inflammation and airway hyperresponsiveness. Mucosal Immunol. 2011;4(5):503–18.  https://doi.org/10.1038/mi.2011.16.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Deshane JS, Redden DT, Zeng M, Spell ML, Zmijewski JW, Anderson JT, et al. Subsets of airway myeloid-derived regulatory cells distinguish mild asthma from chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2015;135(2):413–424.e15.  https://doi.org/10.1016/j.jaci.2014.08.040.CrossRefPubMedGoogle Scholar
  10. 10.
    Arora M, Poe SL, Ray A, Ray P. LPS-induced CD11b+Gr1(int)F4/80+ regulatory myeloid cells suppress allergen-induced airway inflammation. Int Immunopharmacol. 2011;11(7):827–32.  https://doi.org/10.1016/j.intimp.2011.01.034.CrossRefPubMedGoogle Scholar
  11. 11.
    Ray P, Arora M, Poe SL, Ray A. Lung myeloid-derived suppressor cells and regulation of inflammation. Immunol Res. 2011;50(2–3):153–8.  https://doi.org/10.1007/s12026-011-8230-1.CrossRefPubMedGoogle Scholar
  12. 12.
    Arora M, Poe SL, Oriss TB, Krishnamoorthy N, Yarlagadda M, Wenzel SE, et al. TLR4/MyD88-induced CD11b+Gr-1 int F4/80+ non-migratory myeloid cells suppress Th2 effector function in the lung. Mucosal Immunol. 2010;3(6):578–93.  https://doi.org/10.1038/mi.2010.41.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Souzdaltseva TV, Makarova TV, Vechkanova NN. NK cells and IgE level in peripheral blood in aspirin-induced and allergic bronchial asthma. Russ J Immunol. 2000;5(3):315–9.PubMedGoogle Scholar
  14. 14.
    Lunding L, Wegmann M. NK cells in asthma exacerbation. Oncotarget. 2015;6(24):19932–3.  https://doi.org/10.18632/oncotarget.4841.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Korsgren M. NK cells and asthma. Curr Pharm Des. 2002;8(20):1871–6.CrossRefGoogle Scholar
  16. 16.
    Boushey HA, Fahy JV. Basic mechanisms of asthma. Environ Health Perspect. 1995;103(Suppl 6):229–33.CrossRefGoogle Scholar
  17. 17.
    Nakagami Y, Favoreto S Jr, Zhen G, Park SW, Nguyenvu LT, Kuperman DA, et al. The epithelial anion transporter pendrin is induced by allergy and rhinovirus infection, regulates airway surface liquid, and increases airway reactivity and inflammation in an asthma model. J Immunol. 2008;181(3):2203–10.CrossRefGoogle Scholar
  18. 18.
    Gay D, Maddon P, Sekaly R, Talle MA, Godfrey M, Long E, et al. Functional interaction between human T-cell protein CD4 and the major histocompatibility complex HLA-DR antigen. Nature. 1987;328(6131):626–9.  https://doi.org/10.1038/328626a0.CrossRefPubMedGoogle Scholar
  19. 19.
    Cammarota G, Scheirle A, Takacs B, Doran DM, Knorr R, Bannwarth W, et al. Identification of a CD4 binding site on the beta 2 domain of HLA-DR molecules. Nature. 1992;356(6372):799–801.  https://doi.org/10.1038/356799a0.CrossRefPubMedGoogle Scholar
  20. 20.
    Konig R, Shen X, Germain RN. Involvement of both major histocompatibility complex class II alpha and beta chains in CD4 function indicates a role for ordered oligomerization in T cell activation. J Exp Med. 1995;182(3):779–87.CrossRefGoogle Scholar
  21. 21.
    Moody DB, Young DC, Cheng TY, Rosat JP, Roura-Mir C, O'Connor PB, et al. T cell activation by lipopeptide antigens. Science. 2004;303(5657):527–31.  https://doi.org/10.1126/science.1089353.CrossRefPubMedGoogle Scholar
  22. 22.
    Mizumoto N, Takashima A. CD1a and langerin: acting as more than Langerhans cell markers. J Clin Invest. 2004;113(5):658–60.  https://doi.org/10.1172/JCI21140.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zajonc DM, Crispin MD, Bowden TA, Young DC, Cheng TY, Hu J, et al. Molecular mechanism of lipopeptide presentation by CD1a. Immunity. 2005;22(2):209–19.  https://doi.org/10.1016/j.immuni.2004.12.009.CrossRefPubMedGoogle Scholar
  24. 24.
    Hardman CS, Chen YL, Salimi M, Jarrett R, Johnson D, Jarvinen VJ, et al. CD1a presentation of endogenous antigens by group 2 innate lymphoid cells. Sci Immunol. 2017;2(18).  https://doi.org/10.1126/sciimmunol.aan5918.CrossRefGoogle Scholar
  25. 25.
    Stone KD, Prussin C, Metcalfe DD. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S73–80.  https://doi.org/10.1016/j.jaci.2009.11.017.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Denzer K, Kleijmeer MJ, Heijnen HF, Stoorvogel W, Geuze HJ. Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci. 2000;113(Pt 19):3365–74.PubMedGoogle Scholar
  27. 27.
    Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–83.  https://doi.org/10.1083/jcb.201211138.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sastre B, Canas JA, Rodrigo-Munoz JM, Del Pozo V. Novel modulators of asthma and allergy: exosomes and MicroRNAs. Front Immunol. 2017;8:826.  https://doi.org/10.3389/fimmu.2017.00826.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    • Torregrosa Paredes P, Esser J, Admyre C, Nord M, Rahman QK, Lukic A, et al. Bronchoalveolar lavage fluid exosomes contribute to cytokine and leukotriene production in allergic asthma. Allergy. 2012;67(7):911–9.  https://doi.org/10.1111/j.1398-9995.2012.02835.x Novel pro-inflammatory role of exosomes in allergic asthma. CrossRefPubMedGoogle Scholar
  30. 30.
    Admyre C, Bohle B, Johansson SM, Focke-Tejkl M, Valenta R, Scheynius A, et al. B cell-derived exosomes can present allergen peptides and activate allergen-specific T cells to proliferate and produce TH2-like cytokines. J Allergy Clin Immunol. 2007;120(6):1418–24.  https://doi.org/10.1016/j.jaci.2007.06.040.CrossRefPubMedGoogle Scholar
  31. 31.
    Levanen B, Bhakta NR, Torregrosa Paredes P, Barbeau R, Hiltbrunner S, Pollack JL, et al. Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. J Allergy Clin Immunol. 2013;131(3):894–903.  https://doi.org/10.1016/j.jaci.2012.11.039.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    • Kulshreshtha A, Ahmad T, Agrawal A, Ghosh B. Proinflammatory role of epithelial cell-derived exosomes in allergic airway inflammation. J Allergy Clin Immunol. 2013;131(4):1194–203, 203 e1–14.  https://doi.org/10.1016/j.jaci.2012.12.1565 Novel crosstalk of pro-inflammatory exosomes in allergic airway inflammation between cell types. CrossRefGoogle Scholar
  33. 33.
    Admyre C, Grunewald J, Thyberg J, Gripenback S, Tornling G, Eklund A, et al. Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluid. Eur Respir J. 2003;22(4):578–83.CrossRefGoogle Scholar
  34. 34.
    Vallhov H, Gutzeit C, Hultenby K, Valenta R, Gronlund H, Scheynius A. Dendritic cell-derived exosomes carry the major cat allergen Fel d 1 and induce an allergic immune response. Allergy. 2015;70(12):1651–5.  https://doi.org/10.1111/all.12701.CrossRefPubMedGoogle Scholar
  35. 35.
    Nazimek K, Bryniarski K, Askenase PW. Functions of exosomes and microbial extracellular vesicles in allergy and contact and delayed-type hypersensitivity. Int Arch Allergy Immunol. 2016;171(1):1–26.  https://doi.org/10.1159/000449249.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hong SW, Kim MR, Lee EY, Kim JH, Kim YS, Jeon SG, et al. Extracellular vesicles derived from Staphylococcus aureus induce atopic dermatitis-like skin inflammation. Allergy. 2011;66(3):351–9.  https://doi.org/10.1111/j.1398-9995.2010.02483.x.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Gehrmann U, Qazi KR, Johansson C, Hultenby K, Karlsson M, Lundeberg L, et al. Nanovesicles from Malassezia sympodialis and host exosomes induce cytokine responses--novel mechanisms for host-microbe interactions in atopic eczema. PLoS One. 2011;6(7):e21480.  https://doi.org/10.1371/journal.pone.0021480.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    • Phinney DG, Di Giuseppe M, Njah J, Sala E, Shiva S, St Croix CM, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun. 2015;6:8472.  https://doi.org/10.1038/ncomms9472 Excellent review of potential roles for exosomes in mitophagy and mitochondiral health. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    •• Morrison TJ, Jackson MV, Cunningham EK, Kissenpfennig A, DF MA, O'Kane CM, et al. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am J Respir Crit Care Med. 2017;196(10):1275–86.  https://doi.org/10.1164/rccm.201701-0170OC Novel finding of mitochondrial transfer and crosstalk between cell types via extracellular vesicles. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    •• Hough KP, Trevor JL, Strenkowski JG, Wang Y, Chacko BK, Tousif S, et al. Exosomal transfer of mitochondria from airway myeloid-derived regulatory cells to T cells. Redox Biol. 2018;18:54–64.  https://doi.org/10.1016/j.redox.2018.06.009 Novel finding of mitochondrial transfer by BAL and MDRC-derived exosomes to CD4 + T cells. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ali SY, Sajdera SW, Anderson HC. Isolation and characterization of calcifying matrix vesicles from epiphyseal cartilage. Proc Natl Acad Sci U S A. 1970;67(3):1513–20.CrossRefGoogle Scholar
  42. 42.
    Simpson RJ, Mathivanan S. Extracellular microvesicles: the need for internationally recognised nomenclature and stringent purification criteria. J Proteomics Bioinformatics. 2012;05.  https://doi.org/10.4172/jpb.10000e10.
  43. 43.
    Witwer KW, Soekmadji C, Hill AF, Wauben MH, Buzas EI, Di Vizio D, et al. Updating the MISEV minimal requirements for extracellular vesicle studies: building bridges to reproducibility. J Extracell Vesicles. 2017;6(1):1396823.  https://doi.org/10.1080/20013078.2017.1396823.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Gruenberg J, Stenmark H. The biogenesis of multivesicular endosomes. Nat Rev Mol Cell Biol. 2004;5(4):317–23.  https://doi.org/10.1038/nrm1360.CrossRefPubMedGoogle Scholar
  45. 45.
    Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 2006;Chapter 3:Unit 3 22. doi: https://doi.org/10.1002/0471143030.cb0322s30, 30, 3.22.1, 3.22.29.CrossRefGoogle Scholar
  46. 46.
    Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–79.  https://doi.org/10.1038/nri855.CrossRefPubMedGoogle Scholar
  47. 47.
    Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9(8):581–93.  https://doi.org/10.1038/nri2567.CrossRefPubMedGoogle Scholar
  48. 48.
    •• Mathieu M, Martin-Jaular L, Lavieu G, Thery C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21(1):9–17.  https://doi.org/10.1038/s41556-018-0250-9 Excellent review on exosome tropism and cellular signaling specificities. CrossRefPubMedGoogle Scholar
  49. 49.
    Andreu Z, Yanez-Mo M. Tetraspanins in extracellular vesicle formation and function. Front Immunol. 2014;5:442.  https://doi.org/10.3389/fimmu.2014.00442.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Charrin S, Jouannet S, Boucheix C, Rubinstein E. Tetraspanins at a glance. J Cell Sci. 2014;127(Pt 17):3641–8.  https://doi.org/10.1242/jcs.154906.CrossRefPubMedGoogle Scholar
  51. 51.
    Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 2013;126(Pt 24):5553–65.  https://doi.org/10.1242/jcs.128868. CrossRefPubMedGoogle Scholar
  52. 52.
    Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C. Exosomal-like vesicles are present in human blood plasma. Int Immunol. 2005;17(7):879–87.  https://doi.org/10.1093/intimm/dxh267.CrossRefPubMedGoogle Scholar
  53. 53.
    Saez F, Frenette G, Sullivan R. Epididymosomes and prostasomes: their roles in posttesticular maturation of the sperm cells. J Androl. 2003;24(2):149–54.CrossRefGoogle Scholar
  54. 54.
    Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A. 2004;101(36):13368–73.  https://doi.org/10.1073/pnas.0403453101.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Admyre C, Johansson SM, Qazi KR, Filen JJ, Lahesmaa R, Norman M, et al. Exosomes with immune modulatory features are present in human breast milk. J Immunol. 2007;179(3):1969–78.CrossRefGoogle Scholar
  56. 56.
    Baixauli F, Lopez-Otin C, Mittelbrunn M. Exosomes and autophagy: coordinated mechanisms for the maintenance of cellular fitness. Front Immunol. 2014;5:403.  https://doi.org/10.3389/fimmu.2014.00403.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Saha B, Momen-Heravi F, Kodys K, Szabo G. MicroRNA cargo of extracellular vesicles from alcohol-exposed monocytes signals naive monocytes to differentiate into M2 macrophages. J Biol Chem. 2016;291(1):149–59.  https://doi.org/10.1074/jbc.M115.694133.CrossRefPubMedGoogle Scholar
  58. 58.
    Admyre C, Johansson SM, Paulie S, Gabrielsson S. Direct exosome stimulation of peripheral human T cells detected by ELISPOT. Eur J Immunol. 2006;36(7):1772–81.  https://doi.org/10.1002/eji.200535615.CrossRefPubMedGoogle Scholar
  59. 59.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.  https://doi.org/10.1038/ncb1596.CrossRefPubMedGoogle Scholar
  60. 60.
    Alexander M, Hu R, Runtsch MC, Kagele DA, Mosbruger TL, Tolmachova T, et al. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun. 2015;6:7321.  https://doi.org/10.1038/ncomms8321.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Segura E, Guerin C, Hogg N, Amigorena S, Thery C. CD8+ dendritic cells use LFA-1 to capture MHC-peptide complexes from exosomes in vivo. J Immunol. 2007;179(3):1489–96.CrossRefGoogle Scholar
  62. 62.
    Nolte-’t Hoen EN, Buschow SI, Anderton SM, Stoorvogel W, Wauben MH. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. Blood. 2009;113(9):1977–81.  https://doi.org/10.1182/blood-2008-08-174094.CrossRefPubMedGoogle Scholar
  63. 63.
    Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341–5.  https://doi.org/10.1038/nbt.1807.CrossRefPubMedGoogle Scholar
  64. 64.
    Sun D, Zhuang X, Zhang S, Deng ZB, Grizzle W, Miller D, et al. Exosomes are endogenous nanoparticles that can deliver biological information between cells. Adv Drug Deliv Rev. 2013;65(3):342–7.  https://doi.org/10.1016/j.addr.2012.07.002.CrossRefPubMedGoogle Scholar
  65. 65.
    El Andaloussi S, Lakhal S, Mager I, Wood MJ. Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev. 2013;65(3):391–7.  https://doi.org/10.1016/j.addr.2012.08.008.CrossRefPubMedGoogle Scholar
  66. 66.
    Chou SH, Lan J, Esposito E, Ning M, Balaj L, Ji X, et al. Extracellular mitochondria in cerebrospinal fluid and neurological recovery after subarachnoid hemorrhage. Stroke. 2017;48(8):2231–7.  https://doi.org/10.1161/STROKEAHA.117.017758.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Skotland T, Sandvig K, Llorente A. Lipids in exosomes: current knowledge and the way forward. Prog Lipid Res. 2017;66:30–41.  https://doi.org/10.1016/j.plipres.2017.03.001.CrossRefPubMedGoogle Scholar
  68. 68.
    Esser J, Gehrmann U, D’Alexandri FL, Hidalgo-Estevez AM, Wheelock CE, Scheynius A, et al. Exosomes from human macrophages and dendritic cells contain enzymes for leukotriene biosynthesis and promote granulocyte migration. J Allergy Clin Immunol. 2010;126(5):1032–40, 40 e1–4.  https://doi.org/10.1016/j.jaci.2010.06.039.CrossRefGoogle Scholar
  69. 69.
    •• Wahlund CJE, Gucluler G, Hiltbrunner S, Veerman RE, Naslund TI, Gabrielsson S. Exosomes from antigen-pulsed dendritic cells induce stronger antigen-specific immune responses than microvesicles in vivo. Sci Rep. 2017;7(1):17095.  https://doi.org/10.1038/s41598-017-16609-6 Great report on how exosomes are more immunogenic than microvesicles and how exosomes play an immunogenic role. CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Denzer K, van Eijk M, Kleijmeer MJ, Jakobson E, de Groot C, Geuze HJ. Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface. J Immunol. 2000;165(3):1259–65.CrossRefGoogle Scholar
  71. 71.
    McKelvey KJ, Powell KL, Ashton AW, Morris JM, McCracken SA. Exosomes: mechanisms of uptake. J Circ Biomark. 2015;4:7.  https://doi.org/10.5772/61186.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Hough KP, Wilson LS, Trevor JL, Strenkowski JG, Maina N, Kim Y-I, et al. Unique lipid signatures of extracellular vesicles from the Airways of Asthmatics. Sci Rep. 2018;8(1):10340.  https://doi.org/10.1038/s41598-018-28655-9. CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Hao S, Bai O, Li F, Yuan J, Laferte S, Xiang J. Mature dendritic cells pulsed with exosomes stimulate efficient cytotoxic T-lymphocyte responses and antitumour immunity. Immunology. 2007;120(1):90–102.  https://doi.org/10.1111/j.1365-2567.2006.02483.x.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Tian T, Zhu YL, Zhou YY, Liang GF, Wang YY, Hu FH, et al. Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J Biol Chem. 2014;289(32):22258–67.  https://doi.org/10.1074/jbc.M114.588046.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Chiba M, Kubota S, Sato K, Monzen S. Exosomes released from pancreatic cancer cells enhance angiogenic activities via dynamin-dependent endocytosis in endothelial cells in vitro. Sci Rep. 2018;8(1):11972.  https://doi.org/10.1038/s41598-018-30446-1. CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Lukic A, Ji J, Idborg H, Samuelsson B, Palmberg L, Gabrielsson S, et al. Pulmonary epithelial cancer cells and their exosomes metabolize myeloid cell-derived leukotriene C4 to leukotriene D4. J Lipid Res. 2016;57(9):1659–69.  https://doi.org/10.1194/jlr.M066910.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Torok NJ. Extracellular vesicles and ceramide: new mediators for macrophage chemotaxis? J Lipid Res. 2016;57(2):157–8.  https://doi.org/10.1194/jlr.C066191.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Podbielska M, Szulc ZM, Kurowska E, Hogan EL, Bielawski J, Bielawska A, et al. Cytokine-induced release of ceramide-enriched exosomes as a mediator of cell death signaling in an oligodendroglioma cell line. J Lipid Res. 2016;57(11):2028–39.  https://doi.org/10.1194/jlr.M070664.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Kakazu E, Mauer AS, Yin M, Malhi H. Hepatocytes release ceramide-enriched pro-inflammatory extracellular vesicles in an IRE1alpha-dependent manner. J Lipid Res. 2016;57(2):233–45.  https://doi.org/10.1194/jlr.M063412.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Qiao Y, Liang X, Yan Y, Lu Y, Zhang D, Yao W, et al. Identification of exosomal miRNAs in rats with pulmonary neutrophilic inflammation induced by zinc oxide nanoparticles. Front Physiol. 2018;9:217.  https://doi.org/10.3389/fphys.2018.00217.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Real JM, Ferreira LRP, Esteves GH, Koyama FC, Dias MVS, Bezerra-Neto JE, et al. Exosomes from patients with septic shock convey miRNAs related to inflammation and cell cycle regulation: new signaling pathways in sepsis? Crit Care. 2018;22(1):68.  https://doi.org/10.1186/s13054-018-2003-3. CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Pua HH, Steiner DF, Patel S, Gonzalez JR, Ortiz-Carpena JF, Kageyama R, et al. MicroRNAs 24 and 27 suppress allergic inflammation and target a network of regulators of T helper 2 cell-associated cytokine production. Immunity. 2016;44(4):821–32.  https://doi.org/10.1016/j.immuni.2016.01.003.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Murugaiyan G, da Cunha AP, Ajay AK, Joller N, Garo LP, Kumaradevan S, et al. MicroRNA-21 promotes Th17 differentiation and mediates experimental autoimmune encephalomyelitis. J Clin Invest. 2015;125(3):1069–80.  https://doi.org/10.1172/JCI74347.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Essandoh K, Li Y, Huo J, Fan GC. MiRNA-mediated macrophage polarization and its potential role in the regulation of inflammatory response. Shock. 2016;46(2):122–31.  https://doi.org/10.1097/SHK.0000000000000604.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Spees JL, Olson SD, Whitney MJ, Prockop DJ. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci U S A. 2006;103(5):1283–8.  https://doi.org/10.1073/pnas.0510511103.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, et al. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med. 2012;18(5):759–65.  https://doi.org/10.1038/nm.2736.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Lo Sicco C, Reverberi D, Balbi C, Ulivi V, Principi E, Pascucci L, et al. Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: endorsement of macrophage polarization. Stem Cells Transl Med. 2017;6(3):1018–28.  https://doi.org/10.1002/sctm.16-0363.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Monsel A, Zhu YG, Gennai S, Hao Q, Hu S, Rouby JJ, et al. Therapeutic effects of human mesenchymal stem cell-derived microvesicles in severe pneumonia in mice. Am J Respir Crit Care Med. 2015;192(3):324–36.  https://doi.org/10.1164/rccm.201410-1765OC.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Gennai S, Monsel A, Hao Q, Park J, Matthay MA, Lee JW. Microvesicles derived from human mesenchymal stem cells restore alveolar fluid clearance in human lungs rejected for transplantation. Am J Transplant. 2015;15(9):2404–12.  https://doi.org/10.1111/ajt.13271.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Zhu YG, Feng XM, Abbott J, Fang XH, Hao Q, Monsel A, et al. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells. 2014;32(1):116–25.  https://doi.org/10.1002/stem.1504.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Fan J, Krautkramer KA, Feldman JL, Denu JM. Metabolic regulation of histone post-translational modifications. ACS Chem Biol. 2015;10(1):95–108.  https://doi.org/10.1021/cb500846u.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Lu C, Thompson CB. Metabolic regulation of epigenetics. Cell Metab. 2012;16(1):9–17.  https://doi.org/10.1016/j.cmet.2012.06.001.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    van der Knaap JA, Verrijzer CP. Undercover: gene control by metabolites and metabolic enzymes. Genes Dev. 2016;30(21):2345–69.  https://doi.org/10.1101/gad.289140.116.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Schvartzman JM, Thompson CB, Finley LWS. Metabolic regulation of chromatin modifications and gene expression. J Cell Biol. 2018;217(7):2247–59.  https://doi.org/10.1083/jcb.201803061.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med. 2011;208(7):1367–76.  https://doi.org/10.1084/jem.20110278.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang LS, et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature. 2009;460(7251):103–7.  https://doi.org/10.1038/nature08097.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Eming SA, Wynn TA, Martin P. Inflammation and metabolism in tissue repair and regeneration. Science. 2017;356(6342):1026–30.  https://doi.org/10.1126/science.aam7928.CrossRefPubMedGoogle Scholar
  98. 98.
    Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013;229(2):176–85.  https://doi.org/10.1002/path.4133.CrossRefPubMedGoogle Scholar
  99. 99.
    Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–7.  https://doi.org/10.1038/nature05485.CrossRefPubMedGoogle Scholar
  100. 100.
    Osborn O, Olefsky JM. The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med. 2012;18(3):363–74.  https://doi.org/10.1038/nm.2627.CrossRefPubMedGoogle Scholar
  101. 101.
    Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20(2):159–66.  https://doi.org/10.1038/nm.3444.CrossRefPubMedGoogle Scholar
  102. 102.
    Dupont M, Souriant S, Lugo-Villarino G, Maridonneau-Parini I, Verollet C. Tunneling nanotubes: intimate communication between myeloid cells. Front Immunol. 2018;9:43.  https://doi.org/10.3389/fimmu.2018.00043.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH. Nanotubular highways for intercellular organelle transport. Science. 2004;303(5660):1007–10.  https://doi.org/10.1126/science.1093133. CrossRefPubMedGoogle Scholar
  104. 104.
    Wang X, Gerdes HH. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ. 2015;22(7):1181–91.  https://doi.org/10.1038/cdd.2014.211.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Vignais ML, Caicedo A, Brondello JM, Jorgensen C. Cell connections by tunneling nanotubes: effects of mitochondrial trafficking on target cell metabolism, homeostasis, and response to therapy. Stem Cells Int. 2017;2017:6917941.  https://doi.org/10.1155/2017/6917941.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Lu J, Zheng X, Li F, Yu Y, Chen Z, Liu Z, et al. Tunneling nanotubes promote intercellular mitochondria transfer followed by increased invasiveness in bladder cancer cells. Oncotarget. 2017;8(9):15539–52.  https://doi.org/10.18632/oncotarget.14695.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Jackson MV, Morrison TJ, Doherty DF, McAuley DF, Matthay MA, Kissenpfennig A, et al. Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS. Stem Cells. 2016;34(8):2210–23.  https://doi.org/10.1002/stem.2372. CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    • Panfoli I, Ravera S, Podesta M, Cossu C, Santucci L, Bartolucci M, et al. Exosomes from human mesenchymal stem cells conduct aerobic metabolism in term and preterm newborn infants. FASEB J. 2016;30(4):1416–24.  https://doi.org/10.1096/fj.15-279679 Identification of functional mitochondrial complexes and direct measurement of exosome respiration by oximetry. CrossRefPubMedGoogle Scholar
  109. 109.
    Kiriyama Y, Nochi H. Intra- and intercellular quality control mechanisms of mitochondria. Cells. 2017;7(1).  https://doi.org/10.3390/cells7010001.
  110. 110.
    Sugiura A, McLelland GL, Fon EA, McBride HM. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J. 2014;33(19):2142–56.  https://doi.org/10.15252/embj.201488104.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Soubannier V, McLelland GL, Zunino R, Braschi E, Rippstein P, Fon EA, et al. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr Biol. 2012;22(2):135–41.  https://doi.org/10.1016/j.cub.2011.11.057.CrossRefPubMedGoogle Scholar
  112. 112.
    Neuspiel M, Schauss AC, Braschi E, Zunino R, Rippstein P, Rachubinski RA, et al. Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Curr Biol. 2008;18(2):102–8.  https://doi.org/10.1016/j.cub.2007.12.038.CrossRefPubMedGoogle Scholar
  113. 113.
    Davis CH, Kim KY, Bushong EA, Mills EA, Boassa D, Shih T, et al. Transcellular degradation of axonal mitochondria. Proc Natl Acad Sci U S A. 2014;111(26):9633–8.  https://doi.org/10.1073/pnas.1404651111.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Medicine, Division of Pulmonary, Allergy and Critical Care MedicineUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations