Structural Analysis of Recent Allergen-Antibody Complexes and Future Directions

  • Geoffrey A. MuellerEmail author
  • Jungki Min
  • Alexander C. Y. Foo
  • Anna Pomés
  • Lars C. Pedersen
Allergens (Robert K. Bush & Stefan Vieths, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Allergens


Purpose of Review

Allergen-antibody complexes are extremely valuable in describing the detailed molecular features of epitopes. This review summarizes insights gained from recently published co-structures and what obstacles impede the acquisition of further data.

Recent Findings

Structural epitope data helped define the epitopes of two anti-Fel d 1 antibodies undergoing phase I clinical trials, providing a greater level of detail than was possible through hydrogen-deuterium exchange protection studies. Separately, a human camelid-like antibody structure with lysozyme described several unique features in a long variable loop that interacted with the active site cleft of Gal d 4. Finally, a co-structure conclusively demonstrated that Phl p 7 could function as a superantigen and that an antibody could simultaneously recognize two epitopes. These remarkable assertions would not have been possible without visualization of the complex. Only three new complexes have appeared in the last few years, suggesting that there are major impediments to traditional production and crystallization.


The structural data was extremely valuable in describing epitopes. New techniques like cryo-EM may provide an alternative to crystallography.


Allergens Antibodies Structure Complex Epitope Crystallography 



Research reported in this publication was supported in part by the Intramural Research Program of the National Institute of Environmental Health Sciences, National Institutes of Health (Research Project nos. Z01-ES102906-01, G.A.M. and ZIA-ES102645, L.C.P.), and in part by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number R01AI077653 (to A.P., contact PI). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Compliance with Ethical Standards

Conflict of Interest

Dr. Pomés reports grants from NIH-NIAID during the conduct of the study and is employed by Indoor Biotechnologies, Inc., outside the submitted work. Drs. Mueller, Min, Foo, and Pedersen declare no conflict of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    • Pomés A, Chruszcz M, Gustchina A, Minor W, Mueller GA, Pedersen LC, et al. 100 Years later: celebrating the contributions of x-ray crystallography to allergy and clinical immunology. J Allergy Clin Immunol. 2015;136(1):29–U87. Comprehensive review of many allergen structures. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mueller GA. Contributions and future directions for structural biology in the study of allergens. Int Arch Allergy Immunol. 2017;174(2):57–66. Scholar
  3. 3.
    Chapman MD, Wunschmann S, Pomés A. Proteases as Th2 adjuvants. Curr Allergy Asthm Res. 2007;7(5):363–7.CrossRefGoogle Scholar
  4. 4.
    Karp CL. Guilt by intimate association: what makes an allergen an allergen? J Allergy Clin Immunol. 2010;125(5):955–60; quiz 61-2. Scholar
  5. 5.
    Thomas WR. Innate affairs of allergens. Clin Exp Allergy. 2013;43(2):152–63. Scholar
  6. 6.
    Alessandri C, Ferrara R, Bernardi ML, Zennaro D, Tuppo L, Giangrieco I, et al. Diagnosing allergic sensitizations in the third millennium: why clinicians should know allergen molecule structures. Clin Transl Allergy. 2017;7:21. Scholar
  7. 7.
    Mueller GA, Pedersen LC, Glesner J, Edwards LL, Zakzuk J, London RE, et al. Analysis of glutathione S-transferase allergen cross-reactivity in a North American population: relevance for molecular diagnosis. J Allergy Clin Immunol. 2015;136:1369–77. Scholar
  8. 8.
    Ghosh D, Mueller GA, Schramm G, Edwards LL, Petersen A, London RE, et al. Primary identification, biochemical characterization, and immunologic properties of the allergenic pollen cyclophilin cat r 1. J Biol Chem. 2014;289(31):21374–85. Scholar
  9. 9.
    • Tscheppe A, Breiteneder H. Recombinant allergens in structural biology, diagnosis, and immunotherapy. Int Arch Allergy Immunol. 2017;172(4):187–202. Comprehensive review of the utitily of recombinant allergens. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Blake CC, Koenig DF, Mair GA, North A, Phillips DC, Sarma VR. Sturcture of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 angstrom resolution. Nature. 1965;206(4986):757–61.CrossRefGoogle Scholar
  11. 11.
    Padlan EA, Silverton EW, Sheriff S, Cohen GH, Smith-Gill SJ, Davies DR. Structure of an antibody-antigen complex: crystal structure of the HyHEL-10 Fab-lysozyme complex. Proc Natl Acad Sci U S A. 1989;86(15):5938–42.CrossRefGoogle Scholar
  12. 12.
    Padavattan S, Schirmer T, Schmidt M, Akdis C, Valenta R, Mittermann I, et al. Identification of a B-cell epitope of hyaluronidase, a major bee venom allergen, from its crystal structure in complex with a specific Fab. J Mol Biol. 2007;368(3):742–52. Scholar
  13. 13.
    Niemi M, Jylha S, Laukkanen ML, Soderlund H, Makinen-Kiljunen S, Kallio JM, et al. Molecular interactions between a recombinant IgE antibody and the beta-lactoglobulin allergen. Structure. 2007;15(11):1413–21. Scholar
  14. 14.
    Mirza O, Henriksen A, Ipsen H, Larsen JN, Wissenbach M, Spangfort MD, et al. Dominant epitopes and allergic cross-reactivity: complex formation between a Fab fragment of a monoclonal murine IgG antibody and the major allergen from birch pollen Bet v 1. J Immunol. 2000;165(1):331–8.CrossRefGoogle Scholar
  15. 15.
    Padavattan S, Flicker S, Schirmer T, Madritsch C, Randow S, Reese G, et al. High-affinity IgE recognition of a conformational epitope of the major respiratory allergen Phl p 2 as revealed by X-ray crystallography. J Immunol. 2009;182(4):2141–51. Scholar
  16. 16.
    Osinski T, Pomés A, Majorek KA, Glesner J, Offermann LR, Vailes LD, et al. Structural analysis of Der p 1-antibody complexes and comparison with complexes of proteins or peptides with monoclonal antibodies. J Immunol. 2015;195(1):307–16. Scholar
  17. 17.
    Chruszcz M, Pomés A, Glesner J, Vailes LD, Osinski T, Porebski PJ, et al. Molecular determinants for antibody binding on group 1 house dust mite allergens. J Biol Chem. 2012;287(10):7388–98. Scholar
  18. 18.
    Li M, Gustchina A, Alexandratos J, Wlodawer A, Wunschmann S, Kepley CL, et al. Crystal structure of a dimerized cockroach allergen Bla g 2 complexed with a monoclonal antibody. J Biol Chem. 2008;283(33):22806–14. Scholar
  19. 19.
    Li M, Gustchina A, Glesner J, Wunschmann S, Vailes LD, Chapman MD, et al. Carbohydrates contribute to the interactions between cockroach allergen Bla g 2 and a monoclonal antibody. J Immunol. 2011;186(1):333–40. Scholar
  20. 20.
    Glesner J, Vailes LD, Schlachter C, Mank N, Minor W, Osinski T, et al. Antigenic determinants of Der p 1: specificity and cross-reactivity associated with IgE antibody recognition. J Immunol. 2017;198(3):1334–44. Scholar
  21. 21.
    Woodfolk JA, Glesner J, Wright PW, Kepley CL, Li M, Himly M, et al. Antigenic determinants of the bilobal cockroach allergen Bla g 2. J Biol Chem. 2016;291(5):2288–301. Scholar
  22. 22.
    Glesner J, Wunschmann S, Li M, Gustchina A, Wlodawer A, Himly M, et al. Mechanisms of allergen-antibody interaction of cockroach allergen Bla g 2 with monoclonal antibodies that inhibit IgE antibody binding. PLoS One. 2011;6(7):e22223. Scholar
  23. 23.
    Pomés A, Chruszcz M, Gustchina A, Wlodawer A. Interfaces between allergen structure and diagnosis: know your epitopes. Curr Allergy Asthma Rep. 2015;15(8):506. Scholar
  24. 24.
    • Dall’Antonia F, Pavkov-Keller T, Zangger K, Keller W. Structure of allergens and structure based epitope predictions. Methods. 2014;66(1):3–21. Excellent review of empirical and computational epitope mapping strategies. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Orengo JM, Radin AR, Kamat V, Badithe A, Ben LH, Bennett BL, et al. Treating cat allergy with monoclonal IgG antibodies that bind allergen and prevent IgE engagement. Nat Commun. 2018;9(1):1421. Scholar
  26. 26.
    Rouet R, Dudgeon K, Christie M, Langley D, Christ D. Fully human VH single domains that rival the stability and cleft recognition of camelid antibodies. J Biol Chem. 2015;290(19):11905–17. Scholar
  27. 27.
    Mitropoulou AN, Bowen H, Dodev TS, Davies AM, Bax HJ, Beavil RL, et al. Structure of a patient-derived antibody in complex with allergen reveals simultaneous conventional and superantigen-like recognition. Proc Natl Acad Sci U S A. 2018;115(37):E8707–E16. Scholar
  28. 28.
    Wachholz PA, Durham SR. Mechanisms of immunotherapy: IgG revisited. Curr Opin Allergy Clin Immunol. 2004;4(4):313–8.CrossRefGoogle Scholar
  29. 29.
    Shamji MH, Ljorring C, Francis JN, Calderon MA, Larche M, Kimber I, et al. Functional rather than immunoreactive levels of IgG4 correlate closely with clinical response to grass pollen immunotherapy. Allergy. 2012;67(2):217–26. Scholar
  30. 30.
    Aalberse RC, Stapel SO, Schuurman J, Rispens T. Immunoglobulin G4: an odd antibody. Clin Exp Allergy. 2009;39(4):469–77. Scholar
  31. 31.
    James LK, Shamji MH, Walker SM, Wilson DR, Wachholz PA, Francis JN, et al. Long-term tolerance after allergen immunotherapy is accompanied by selective persistence of blocking antibodies. J Allergy Clin Immunol. 2011;127(2):509–16 e1–5. Scholar
  32. 32.
    Bachmann MF, Kundig TM. Allergen-specific immunotherapy: is it vaccination against toxins after all? Allergy. 2017;72(1):13–23. Scholar
  33. 33.
    Subbarayal B, Schiller D, Mobs C, de Jong NW, Ebner C, Reider N, et al. Kinetics, cross-reactivity, and specificity of Bet v 1-specific IgG4 antibodies induced by immunotherapy with birch pollen. Allergy. 2013;68(11):1377–86. Scholar
  34. 34.
    Varga EM, Kausar F, Aberer W, Zach M, Eber E, Durham SR, et al. Tolerant beekeepers display venom-specific functional IgG4 antibodies in the absence of specific IgE. J Allergy Clin Immunol. 2013;131(5):1419–21. Scholar
  35. 35.
    Kaiser L, Gronlund H, Sandalova T, Ljunggren HG, Achour A, Schneider G, et al. Three-dimensional structure of Fel d 1, the major allergen in cat. Int Arch Allergy Immunol. 2003;132(1):25–6. Scholar
  36. 36.
    Willison LN, Zhang Q, Su MN, Teuber SS, Sathe SK, Roux KH. Conformational epitope mapping of Pru du 6, a major allergen from almond nut. Mol Immunol. 2013;55(3–4):253–63. Scholar
  37. 37.
    Guan XY, Noble KA, Tao YQ, Roux KH, Sathe SK, Young NL, et al. Epitope mapping of 7S cashew antigen in complex with antibody by solution-phase H/D exchange monitored by FT-ICR mass spectrometry. J Mass Spectrom. 2015;50(6):812–9. Scholar
  38. 38.
    Brier S, Le Mignon M, Jain K, Lebrun C, Peurois F, Kellenberger C, et al. Characterization of epitope specificities of reference antibodies used for the quantification of the birch pollen allergen Bet v 1. Allergy. 2018;73(5):1032–40. Scholar
  39. 39.
    Williams DC Jr, Benjamin DC, Poljak RJ, Rule GS. Global changes in amide hydrogen exchange rates for a protein antigen in complex with three different antibodies. J Mol Biol. 1996;257(4):866–76.CrossRefGoogle Scholar
  40. 40.
    Mueller GA, Smith AM, Chapman MD, Rule GS, Benjamin DC. Hydrogen exchange nuclear magnetic resonance spectroscopy mapping of antibody epitopes on the house dust mite allergen Der p 2. J Biol Chem. 2001;276(12):9359–65. Scholar
  41. 41.
    Flicker S, Steinberger P, Norderhaug L, Sperr WR, Majlesi Y, Valent P, et al. Conversion of grass pollen allergen-specific human IgE into a protective IgG(1) antibody. Eur J Immunol. 2002;32(8):2156–62.<2156::Aid-Immu2156>3.0.Co;2-A.CrossRefPubMedGoogle Scholar
  42. 42.
    Patil SU, Ogunniyi AO, Calatroni A, Tadigotla VR, Ruiter B, Ma A, et al. Peanut oral immunotherapy transiently expands circulating Ara h 2-specific B cells with a homologous repertoire in unrelated subjects. J Allergy Clin Immunol. 2015;136(1):125–U253. Scholar
  43. 43.
    Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446–8. Scholar
  44. 44.
    Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82:775–97. Scholar
  45. 45.
    Riechmann L, Muyldermans S. Single domain antibodies: comparison of camel VH and camelised human VH domains. J Immunol Methods. 1999;231(1–2):25–38. Scholar
  46. 46.
    De Genst E, Silence K, Decanniere K, Conrath K, Loris R, Kinne J, et al. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci U S A. 2006;103(12):4586–91. Scholar
  47. 47.
    De Genst E, Silence K, Ghahroudi MA, Decanniere K, Loris R, Kinne J, et al. Strong in vivo maturation compensates for structurally restricted H3 loops in antibody repertoires. J Biol Chem. 2005;280(14):14114–21. Scholar
  48. 48.
    Stanfield RL, Dooley H, Flajnik MF, Wilson IA. Crystal structure of a shark single-domain antibody V region in complex with lysozyme. Science. 2004;305(5691):1770–3. Scholar
  49. 49.
    Graille M, Stura EA, Corper AL, Sutton BJ, Taussig MJ, Charbonnier JB, et al. Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: structural basis for recognition of B-cell receptors and superantigen activity. Proc Natl Acad Sci U S A. 2000;97(10):5399–404.CrossRefGoogle Scholar
  50. 50.
    Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007;372(3):774–97. Scholar
  51. 51.
    Graille M, Stura EA, Housden NG, Beckingham JA, Bottomley SP, Beale D, et al. Complex between Peptostreptococcus magnus protein L and a human antibody reveals structural convergence in the interaction modes of Fab binding proteins. Structure. 2001;9(8):679–87.CrossRefGoogle Scholar
  52. 52.
    James LK. The cloning and expression of human monoclonal antibodies: implications for allergen immunotherapy. Curr Allergy Asthma Rep. 2016;16(2):15. Scholar
  53. 53.
    Robinson WH. Sequencing the functional antibody repertoire—diagnostic and therapeutic discovery. Nat Rev Rheumatol. 2015;11(3):171–82. Scholar
  54. 54.
    Kovari LC, Momany C, Rossmann MG. The use of antibody fragments for crystallization and structure determinations. Structure. 1995;3(12):1291–3.CrossRefGoogle Scholar
  55. 55.
    Gupta SK, Shukla P. Microbial platform technology for recombinant antibody fragment production: a review. Crit Rev Microbiol. 2017;43(1):31–42. Scholar
  56. 56.
    Long NE, Sullivan BJ, Ding HM, Doll S, Ryan MA, Hitchcock CL, et al. Linker engineering in anti-TAG-72 antibody fragments optimizes biophysical properties, serum half-life, and high-specificity tumor imaging. J Biol Chem. 2018;293(23):9030–40. Scholar
  57. 57.
    Perisic O, Webb PA, Holliger P, Winter G, Williams RL. Crystal structure of a diabody, a bivalent antibody fragment. Structure. 1994;2(12):1217–26.CrossRefGoogle Scholar
  58. 58.
    Mueller GA, Ankney JA, Glesner J, Khurana T, Edwards LL, Pedersen LC, et al. Characterization of an anti-Bla g 1 scFv: epitope mapping and cross-reactivity. Mol Immunol. 2014;59(2):200–7. Scholar
  59. 59.
    Frenzel A, Hust M, Schirrmann T. Expression of recombinant antibodies. Front Immunol. 2013;4:217. Scholar
  60. 60.
    Levy R, Weiss R, Chen G, Iverson BL, Georgiou G. Production of correctly folded Fab antibody fragment in the cytoplasm of Escherichia coli trxB gor mutants via the coexpression of molecular chaperones. Protein Expr Purif. 2001;23(2):338–47. Scholar
  61. 61.
    Schmiedl A, Breitling F, Winter CH, Queitsch I, Dubel S. Effects of unpaired cysteines on yield, solubility and activity of different recombinant antibody constructs expressed in E. coli. J Immunol Methods. 2000;242(1–2):101–14.CrossRefGoogle Scholar
  62. 62.
    Yu CM, Peng HP, Chen IC, Lee YC, Chen JB, Tsai KC, et al. Rationalization and design of the complementarity determining region sequences in an antibody-antigen recognition interface. PLoS One. 2012;7(3):e33340. Scholar
  63. 63.
    Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7.CrossRefGoogle Scholar
  64. 64.
    Kunert R, Reinhart D. Advances in recombinant antibody manufacturing. Appl Microbiol Biotechnol. 2016;100(8):3451–61. Scholar
  65. 65.
    Jain NK, Barkowski-Clark S, Altman R, Johnson K, Sun F, Zmuda J, et al. A high density CHO-S transient transfection system: comparison of ExpiCHO and Expi293. Protein Expr Purif. 2017;134:38–46. Scholar
  66. 66.
    Dangi AK, Sinha R, Dwivedi S, Gupta SK, Shukla P. Cell line techniques and gene editing tools for antibody production: a review. Front Pharmacol. 2018;9:630. Scholar
  67. 67.
    Merk A, Bartesaghi A, Banerjee S, Falconieri V, Rao P, Davis MI, et al. Breaking cryo-EM resolution barriers to facilitate drug discovery. Cell. 2016;165(7):1698–707. Scholar
  68. 68.
    Khoshouei M, Radjainia M, Baumeister W, Danev R. Cryo-EM structure of haemoglobin at 3.2 A determined with the Volta phase plate. Nat Commun. 2017;8:16099. Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019

Authors and Affiliations

  • Geoffrey A. Mueller
    • 1
    Email author
  • Jungki Min
    • 1
  • Alexander C. Y. Foo
    • 1
  • Anna Pomés
    • 2
  • Lars C. Pedersen
    • 1
  1. 1.National Institute of Environmental Health SciencesResearch Triangle ParkUSA
  2. 2.Indoor Biotechnologies, Inc.CharlottesvilleUSA

Personalised recommendations