Sampling Devices for Indoor Allergen Exposure: Pros and Cons

  • Torie Grant
  • Ana M. Rule
  • Kirsten Koehler
  • Robert A. Wood
  • Elizabeth C. MatsuiEmail author
Allergens (R. K. Bush & S. Vieths, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Allergens


Purpose of Review

To review current indoor allergen sampling devices, including devices to measure allergen in reservoir and airborne dust, and personal sampling devices, with attention to sampling rationale and major indoor allergen size and characteristics.

Recent Findings

While reservoir dust vacuuming samples and airborne dust volumetric air sampling remain popular techniques, recent literature describes sampling using furnace filters and ion-charging devices, both which help to eliminate the need for trained staff; however, variable correlation with reservoir dust and volumetric air sampling has been described. Personal sampling devices include intra-nasal samples and personal volumetric air samples. While these devices may offer better estimates of breathable allergens, they are worn for short periods of time and can be cumbersome.


Reservoir dust sampling is inexpensive and is possible for families to perform. Airborne dust sampling can be more expensive and may better quantify cat, dog, and mouse allergen exposure. Personal sampling devices may offer a better representation of breathable air.


Indoor allergen exposure Indoor allergen sampling Vacuum allergen sampling Allergen in settled dust Airborne allergen sampling Personal allergen samplers 


Compliance with Ethical Standards

Conflict of Interest

Dr. Matsui reports grants from Inspirotec outside the submitted work. Dr. Wood reports grants from NIAID, DBV, Astellas, Aimmune, Sanofi, Regeneron, and personal fees from Up to Date and AAAAI, outside the submitted work. The other authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Torjusen EN, Diette GB, Breysse PN, Curtin-Brosnan J, Aloe C, Matsui EC. Dose-response relationships between mouse allergen exposure and asthma morbidity among urban children and adolescents. Indoor Air. 2013;23(4):268–74.CrossRefGoogle Scholar
  2. 2.
    Rosenstreich D, Eggleston P, Kattan M. The role of cockroach allergy and exposure to cockroach allergen in causing morbidity among inner-city children with asthma. NEJM. 1997;336(19).Google Scholar
  3. 3.
    Matsui EC, Buckley TJ, Krishnan JA, Breysse PN, Rand CS, Diette GB. Household mouse allergen exposure and asthma morbidity in inner-city preschool children. Ann Allergy Asthma Immunol. 2006;97(4):514–20.CrossRefGoogle Scholar
  4. 4.
    Lin S, Jones R, Munsie JP, Nayak SG, Fitzgerald EF, Hwang SA. Childhood asthma and indoor allergen exposure and sensitization in Buffalo, New York. Int J Hyg Environ Health. 2012;215(3):297–305.CrossRefGoogle Scholar
  5. 5.
    Platts-Mills TA, Vervloet D, Thomas WR, Aalberse RC, Chapman MD. Indoor allergens and asthma: report of the third international workshop. J Allergy Clin Immunol. 1997;100(6 Pt 1):S2–24.CrossRefGoogle Scholar
  6. 6.
    Wang Y, Xiong L, Yin X, Wang J, Zhang Q, Yu Z, et al. House dust mite allergen levels in households and correlation with allergic rhinitis symptoms. Am J Rhinol Allergy. 2014;28(5):193–6.CrossRefGoogle Scholar
  7. 7.
    Shargorodsky J, Garcia-Esquinas E, Umanskiy R, Navas-Acien A, Lin SY. Household pet exposure, allergic sensitization, and rhinitis in the U.S. population. Int Forum Allergy Rhinol. 2017;7(7):645–51.CrossRefGoogle Scholar
  8. 8.
    Grant T, Aloe C, Perzanowski M, Phipatanakul W, Bollinger ME, Miller R, et al. Mouse sensitization and exposure are associated with asthma severity in urban children. J Allergy Clin Immunol Pract. 2017;5(4):1008–14.CrossRefGoogle Scholar
  9. 9.
    Morgan WJ, Crain EF, Gruchalla RS, O'Connor GT, Kattan M, Evans R 3rd, et al. Results of a home-based environmental intervention among urban children with asthma. N Engl J Med. 2004;351(11):1068–80.CrossRefGoogle Scholar
  10. 10.
    Matsui EC, Perzanowski M, Peng RD, Wise RA, Balcer-Whaley S, Newman M, et al. Effect of an integrated pest management intervention on asthma symptoms among mouse-sensitized children and adolescents with asthma: a randomized clinical trial. JAMA. 2017;317(10):1027–36.CrossRefGoogle Scholar
  11. 11.
    Expert Panel Report 3 (EPR-3): guidelines for the diagnosis and management of asthma—summary report 2007. J Allergy Clin Immuno. 2007;120(5 Suppl):S94–138.Google Scholar
  12. 12.
    Portnoy J, Miller JD, Williams PB, Chew GL, Miller JD, Zaitoun F, et al. Environmental assessment and exposure control of dust mites: a practice parameter. Ann Allergy Asthma Immunol. 2013;111(6):465–507.CrossRefGoogle Scholar
  13. 13.
    Portnoy J, Chew GL, Phipatanakul W, Williams PB, Grimes C, Kennedy K, et al. Environmental assessment and exposure reduction of cockroaches: a practice parameter. J Allergy Clin Immunol. 2013;132(4):802–8.e1–25.CrossRefGoogle Scholar
  14. 14.
    Phipatanakul W, Matsui E, Portnoy J, Williams PB, Barnes C, Kennedy K, et al. Environmental assessment and exposure reduction of rodents: a practice parameter. Ann Allergy Asthma Immunol. 2012;109(6):375–87.CrossRefGoogle Scholar
  15. 15.
    Tschudy MM, Sharfstein J, Matsui E, Barnes CS, Chacker S, Codina R, et al. Something new in the air: paying for community-based environmental approaches to asthma prevention and control. J Allergy Clin Immunol. 2017;140(5):1244–9.CrossRefGoogle Scholar
  16. 16.
    Karvala K, Nordman H, Luukkonen R, Nykyri E, Lappalainen S, Hannu T, et al. Occupational rhinitis in damp and moldy workplaces. Am J Rhinol. 2008;22(5):457–62.CrossRefGoogle Scholar
  17. 17.
    Friedman-Jimenez G, Harrison D, Luo H. Occupational asthma and work-exacerbated asthma. Semin Respir Crit Care Med. 2015;36(3):388–407.CrossRefGoogle Scholar
  18. 18.
    O'Connor GT, Lynch SV, Bloomberg GR, Kattan M, Wood RA, Gergen PJ, et al. Early-life home environment and risk of asthma among inner-city children. J Allergy Clin Immunol. 2018;141(4):1468–75.CrossRefGoogle Scholar
  19. 19.
    Lanphear BP, Kahn RS, Berger O, Auinger P, Bortnick SM, Nahhas RW. Contribution of residential exposures to asthma in us children and adolescents. Pediatrics. 2001;107(6):E98.CrossRefGoogle Scholar
  20. 20.
    Gold DR, Adamkiewicz G, Arshad SH, Celedón JC, Chapman MD, Chew GL, et al. NIAID, NIEHS, NHLBI, and MCAN workshop report: the indoor environment and childhood asthma-implications for home environmental intervention in asthma prevention and management. J Allergy Clin Immunol. 2017;140(4):933–49.CrossRefGoogle Scholar
  21. 21.
    Posa D, Hofmaier S, Arasi S, Matricardi PM. Natural evolution of IgE responses to mite allergens and relationship to progression of allergic disease: a review. Curr Allergy Asthma Rep. 2017;17(5):28.CrossRefGoogle Scholar
  22. 22.
    Wang JY. The innate immune response in house dust mite-induced allergic inflammation. Allergy Asthma Immunol Res. 2013;5(2):68–74.CrossRefGoogle Scholar
  23. 23.
    Villaseñor A, Rosace D, Obeso D, Pérez-Gordo M, Chivato T, Barbas C, et al. Allergic asthma: an overview of metabolomic strategies leading to the identification of biomarkers in the field. Clin Exp Allergy. 2017;47(4):442–56.CrossRefGoogle Scholar
  24. 24.
    Platts-Mills TAE, Schuyler AJ, Erwin EA, Commins SP, Woodfolk JA. IgE in the diagnosis and treatment of allergic disease. J Allergy Clin Immunol. 2016;137(6):1662–70.CrossRefGoogle Scholar
  25. 25.
    • Hamilton RG. Assessment of indoor allergen exposure. Curr Allergy Asthma Rep. 2005;5(5):394–401 Detailed review of indoor allergen assessement. CrossRefGoogle Scholar
  26. 26.
    American Pet Products Association 2017-2018 National Pet Owners Survey. Available from: Accessed 6 Aug 2018.
  27. 27.
    •• Ahluwalia SK, Matsui EC. Indoor environmental interventions for furry pet allergens, pest allergens, and mold: looking to the future. J Allergy Clin Immunol Pract. 2018;6(1):9–19 Detailed review of indoor allergen environmental control measures. CrossRefGoogle Scholar
  28. 28.
    Custovic A, Simpson A, Pahdi H, Green RM, Chapman MD, Woodcock A. Distribution, aerodynamic characteristics, and removal of the major cat allergen Fel d 1 in British homes. Thorax. 1998;53(1):33–8.CrossRefGoogle Scholar
  29. 29.
    Abramson SL, Turner-Henson A, Anderson L, Hemstreet MP, Bartholomew LK, Joseph CL, et al. Allergens in school settings: results of environmental assessments in 3 city school systems. J Sch Health. 2006;76(6):246–9.CrossRefGoogle Scholar
  30. 30.
    Sander I, Lotz A, Neumann HD, Czibor C, Flagge A, Zahradnik E, et al. Indoor allergen levels in settled airborne dust are higher in day-care centers than at home. Allergy. 2018;73(6):1263–75.CrossRefGoogle Scholar
  31. 31.
    Martin IR, Wickens K, Patchett K, Kent R, Fitzharris P, Siebers R, et al. Cat allergen levels in public places in New Zealand. N Z Med J. 1998;111(1074):356–8.PubMedGoogle Scholar
  32. 32.
    De Lucca SD, O'meara TJ, Tovey ER. Exposure to mite and cat allergens on a range of clothing items at home and the transfer of cat allergen in the workplace. J Allergy Clin Immunol. 2000;106(5):874–9.CrossRefGoogle Scholar
  33. 33.
    Perfetti L, Ferrari M, Galdi E, Pozzi V, Cottica D, Grignani E, et al. House dust mites (Der p 1, Der f 1), cat (Fel d 1) and cockroach (Bla g 2) allergens in indoor work-places (offices and archives). Sci Total Environ. 2004;328(1–3):15–21.CrossRefGoogle Scholar
  34. 34.
    Custovic A, Green R, Fletcher A, Smith A, Pickering CA, Chapman MD, et al. Aerodynamic properties of the major dog allergen Can f 1: distribution in homes, concentration, and particle size of allergen in the air. Am J Respir Crit Care Med. 1997;155(1):94–8.CrossRefGoogle Scholar
  35. 35.
    Salo PM, Sever ML, Zeldin DC. Indoor allergens in school and day care environments. J Allergy Clin Immunol. 2009;124(2):185–92 192.CrossRefGoogle Scholar
  36. 36.
    Carrer P, Maroni M, Alcini D, Cavallo D. Allergens in indoor air: environmental assessment and health effects. Sci Total Environ. 2001;270(1–3):33–42.CrossRefGoogle Scholar
  37. 37.
    Miller JD. The role of dust mites in allergy. Clin Rev Allergy Immunol. 2018.Google Scholar
  38. 38.
    Vyszenski-Moher DL, Arlian LG, Bernstein IL, Gallagher JS. Prevalence of house dust mites in nursing homes in Southwest Ohio. J Allergy Clin Immunol. 1986;77(5):745–8.CrossRefGoogle Scholar
  39. 39.
    De Lucca SD, Taylor DJ, O'Meara TJ, Jones AS, Tovey ER. Measurement and characterization of cockroach allergens detected during normal domestic activity. J Allergy Clin Immunol. 1999;104(3 Pt 1):672–80.CrossRefGoogle Scholar
  40. 40.
    Matsui EC, Simons E, Rand C, Butz A, Buckley TJ, Breysse P, et al. Airborne mouse allergen in the homes of inner-city children with asthma. J Allergy Clin Immunol. 2005;115(2):358–63.CrossRefGoogle Scholar
  41. 41.
    Perry TT, Vargas PA, Bufford J, Feild C, Flick M, Simpson PM, et al. Classroom aeroallergen exposure in Arkansas head start centers. Ann Allergy Asthma Immunol. 2008;100:358–63.CrossRefGoogle Scholar
  42. 42.
    Simons E, Curtin-Brosnan J, Buckley T, Breysse P, Eggleston PA. Indoor environmental differences between inner city and suburban homes of children with asthma. J Urban Health. 2007;84(4):577–90.CrossRefGoogle Scholar
  43. 43.
    Sandoval-Denis M, Sutton DA, Martin-Vicente A, Cano-Lira JF, Wiederhold N, Guarro J, et al. Cladosporium species recovered from clinical samples in the United States. J Clin Microbiol. 2015;53(9):2990–3000.CrossRefGoogle Scholar
  44. 44.
    Bartemes KR, Kita H. Innate and adaptive immune responses to fungi in the airway. J Allergy Clin Immunol. 2018;142(2):353–63.CrossRefGoogle Scholar
  45. 45.
    Cox J, Indugula R, Vesper S, Zhu Z, Jandarov R, Reponen T. Comparison of indoor air sampling and dust collection methods for fungal exposure assessment using quantitative PCR. Environ Sci Process Impacts. 2017;19(10):1312–9.CrossRefGoogle Scholar
  46. 46.
    Barnes CS, Horner WE, Kennedy K, Grimes C, Miller JD. Environmental Allergens Workgroup. Home assessment and remediation. J Allergy Clin Immunol Pract. 2016;4(3):423–431.e15.CrossRefGoogle Scholar
  47. 47.
    • Tovey ER, Mitakakis TZ, Sercombe JK, Vanlaar CH, Marks GB. Four methods of sampling for dust mite allergen: differences in ‘dust’. Allergy. 2003;58(8):790–4 Comparison of reservoir and airborne dust methods.CrossRefGoogle Scholar
  48. 48.
    Platts-Mills TA, Thomas WR, Aalberse RC, Vervloet D, Champman MD. Dust mite allergens and asthma: report of a second international workshop. J Allergy Clin Immunol. 1992;89(5):1046–60.CrossRefGoogle Scholar
  49. 49.
    Peterson EL, Ownby DR, Kallenbach L, Johnson CC. Evaluation of air and dust sampling schemes for Fel d 1, Der f 1, and Der p 1 allergens in homes in the Detroit area. J Allergy Clin Immunol. 1999;104(2 Pt 1):348–55.CrossRefGoogle Scholar
  50. 50.
    Breysse PN, Buckley TJ, Williams D, Beck CM, Jo SJ, Merriman B, et al. Indoor exposures to air pollutants and allergens in the homes of asthmatic children in inner-city Baltimore. Environ Res. 2005;98(2):167–76.CrossRefGoogle Scholar
  51. 51.
    Sandel M, Murphy JS, Dixon SL, Adgate JL, Chew GL, Dorevitch S, et al. A side-by-side comparison of three allergen sampling methods in settled house dust. J Expo Sci Environ Epidemiol. 2014;24(6):650–6.CrossRefGoogle Scholar
  52. 52.
    • Arbes SJ Jr, Sever M, Vaughn B, Mehta J, Lynch JT, Mitchell H, et al. Feasibility of using subject-collected dust samples in epidemiologic and clinical studies of indoor allergens. Environ Health Perspect. 2005;113(6):665–9 Comparison of participants vs technician collected samples. CrossRefGoogle Scholar
  53. 53.
    • Barnes C, Portnoy JM, Ciaccio CE, Pacheco F. A comparison of subject room dust with home vacuum dust for evaluation of dust-borne aeroallergens. Ann Allergy Asthma Immunol. 2013;110(5):375–9 Comparison of grab vacuum vs technician samples.CrossRefGoogle Scholar
  54. 54.
    Custovic A, Simpson B, Simpson A, Hallam C, Craven M, Woodcock A. Relationship between mite, cat, and dog allergens in reservoir dust and ambient air. Allergy. 1999;54(6):612–6.CrossRefGoogle Scholar
  55. 55.
    Kilburg-Basnyat B, Metwali N, Thorne PS. Effect of deployment time on endotoxin and allergen exposure assessment using electrostatic dust collectors. Ann Occup Hyg. 2015;59(1):104–15.PubMedGoogle Scholar
  56. 56.
    American Industrial Hygiene Association Sampling and Sizing of Airborne Particles. Available from: Accessed 8 Aug 2018.
  57. 57.
    United States Environmental Protection Agency Particulate Matter Basics. Available from: Accessed 8 Aug 2018.
  58. 58.
    •• Barnes CS, Allenbrand R, Mohammed M, Gard L, Pacheco F, Kennedy K, et al. Measurement of aeroallergens from furnace filters. Ann Allergy Asthma Immunol. 2015;114(3):221–5 Study evaluating sampling from furnace filters. CrossRefGoogle Scholar
  59. 59.
    Maestre JP, Jennings W, Wylie D, Horner SD, Siegel J, Kinney K. Filter forensics: microbiota recovery from residential HVAC filters. Microbiome. 2018;6(1):22.CrossRefGoogle Scholar
  60. 60.
    •• Allenbrand R, Barnes CS, Mohammed M, Gard L, Pacheco F, Kennedy K, et al. Comparison of allergens collected from furnace filters and vacuum floor dust. Ann Allergy Asthma Immunol. 2017;118(1):108–9 Comparison of furnace filter vs reservoir dust samples. CrossRefGoogle Scholar
  61. 61.
    Custis NJ, Woodfolk JA, Vaughan JW, Platts-Mills TA. Quantitative measurement of airborne allergens from dust mites, dogs, and cats using an ion-charging device. Clin Exp Allergy. 2003;33(7):986–91.CrossRefGoogle Scholar
  62. 62.
    •• Gordon J, Reboulet R, Gandhi P, Matsui E. Validation of a novel sampling technology for airborne allergens in low-income urban homes. Ann Allergy Asthma Immunol. 2018;120(1):96–97.e1 Study of ICD use in urban homes. CrossRefGoogle Scholar
  63. 63.
    •• Afshar-Mohajer N, Godfrey W, Rule A, Matsui E, Gordon J, Koehler K. A low-cost device for bulk sampling of airborne particulate matter: evaluation of an ionic charging device. Aerosol Air Qual Res. 2017;17:1452–62 Study of ICDs vs personal sampling devices. CrossRefGoogle Scholar
  64. 64.
    • Graham JA, Pavlicek PK, Sercombe JK, Xavier ML, Tovey ER. The nasal air sampler: a device for sampling inhaled aeroallergens. Ann Allergy Asthma Immunol. 2000;84(6):599–604 Description of NAS. CrossRefGoogle Scholar
  65. 65.
    •• Tovey ER, Liu-Brennan D, Garden FL, Oliver BG, Perzanowski MS, Marks GB. Time-based measurement of personal mite allergen bioaerosol exposure over 24 hour periods. PLoS One. 2016;11(5):e0153414 Description of time-resolved personal sampling devices. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Torie Grant
    • 1
  • Ana M. Rule
    • 2
  • Kirsten Koehler
    • 2
  • Robert A. Wood
    • 1
  • Elizabeth C. Matsui
    • 3
    Email author
  1. 1.Division of Pediatric Allergy/ImmunologyJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of Environmental Health and Engineering, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreUSA
  3. 3.Departments of Population Health and Pediatrics, Dell Medical SchoolThe University of Texas at AustinAustinUSA

Personalised recommendations