Staphylococcal Biofilms in Atopic Dermatitis

  • Tammy Gonzalez
  • Jocelyn M. Biagini Myers
  • Andrew B. HerrEmail author
  • Gurjit K. Khurana HersheyEmail author
Basic and Applied Science (I Lewkowich, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Basic and Applied Science


Purpose of Review

Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disorder that is a major public health burden worldwide. AD lesions are often colonized by Staphylococcus aureus and Staphylococcus epidermidis. An important aspect of Staphylococcus spp. is their propensity to form biofilms, adhesive surface-attached colonies that become highly resistant to antibiotics and immune responses, and recent studies have found that clinical isolates colonizing AD skin are often biofilm-positive. Biofilm formation results in complex bacterial communities that have unique effects on keratinocytes and host immunity. This review will summarize recent studies exploring the role of staphyloccocal biofilms in atopic dermatitis and the implications for treatment.

Recent Findings

Recent studies suggest an important role for biofilms in the pathogenesis of numerous dermatologic diseases including AD. S. aureus biofilms have been found to colonize the eccrine ducts of AD skin, and these biofilms influence secretion of keratinocyte cytokines and trigger differentiation and apoptosis of keratinocytes. These activities may act to disrupt barrier function and promote disease pathogenesis as well as allergen sensitization.


Formation of biofilm is a successful strategy that protects the bacteria from environmental danger, antibiotics, and phagocytosis, enabling chronic persistence in the host. An increasing number of S. aureus skin isolates are resistant to conventional antibiotics, and staphylococcal biofilm communities are prevalent on the skin of individuals with AD. Staphylococcal colonization of the skin impacts skin barrier function and plays multiple important roles in AD pathogenesis.


Atopic dermatitis Biofilm Staphylococci Microbiome Barrier function Epidermis 



Research by the authors on atopic dermatitis, host epithelial responses, and staphylococcal biofilms has been supported by NIH grants U19 AI070235 (to GKH, JBM, and ABH) and R01 GM094363 (to ABH). We gratefully acknowledge the editorial assistance of Angela Sadler.

Compliance with Ethical Standards

Conflict of Interest

Dr. Herr reports the following disclosures: Advisory board member for Hoth Therapeutics, Inc.; Owns equity in Chelexa BioSciences, LLC; Co-inventor on patent EP23106821 licensed to Chelexa BioSciences, LLC; and Co-inventor on patent application US 20140308326 A1. Ms. Gonzalez, Dr. Biagini Myers, and Dr. Khurana Hershey declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Weidinger S, Novak N. Atopic dermatitis. Lancet. 2016;387(10023):1109–22.PubMedCrossRefGoogle Scholar
  2. 2.
    Drucker AM, Wang AR, Li WQ, Sevetson E, Block JK, Qureshi AA. The burden of atopic dermatitis: summary of a report for the National Eczema Association. J Invest Dermatol. 2017;137(1):26–30.PubMedCrossRefGoogle Scholar
  3. 3.
    Biagini Myers JM, Khurana Hershey GK. Eczema in early life: genetics, the skin barrier, and lessons learned from birth cohort studies. J Pediatr. 2010;157(5):704–14.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Zheng T, Yu J, Oh MH, Zhu Z. The atopic march: progression from atopic dermatitis to allergic rhinitis and asthma. Allergy Asthma Immunol Res. 2011;3(2):67–73.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Brandt EB, Sivaprasad U. Th2 cytokines and atopic dermatitis. J Clin Cell Immunol. 2011;2(3):110.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Travers JB. Toxic interaction between Th2 cytokines and Staphylococcus aureus in atopic dermatitis. J Invest Dermatol. 2014;134(8):2069–71.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Kobayashi T, Glatz M, Horiuchi K, Kawasaki H, Akiyama H, Kaplan DH, et al. Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis. Immunity. 2015;42(4):756–66.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Salava A, Lauerma A. Role of the skin microbiome in atopic dermatitis. Clin Transl Allergy. 2014;4:33.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Williams MR, Gallo RL. The role of the skin microbiome in atopic dermatitis. Curr Allergy Asthma Rep. 2015;15(11):65.PubMedCrossRefGoogle Scholar
  10. 10.
    Ovaere P, Lippens S, Vandenabeele P, Declercq W. The emerging roles of serine protease cascades in the epidermis. Trends Biochem Sci. 2009;34(9):453–63.PubMedCrossRefGoogle Scholar
  11. 11.
    Otto M. Staphylococcus colonization of the skin and antimicrobial peptides. Expert Rev Dermatol. 2010;5(2):183–95.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. Staphylococcus aureus biofilms: Properties, regulation and roles in human disease. Virulence. 2011;2(5):445-59.Google Scholar
  13. 13.
    Dasgupta MK. Biofilms and infection in dialysis patients. Semin Dial. 2002;15(5):338–46.PubMedCrossRefGoogle Scholar
  14. 14.
    •• Allen HB, Vaze ND, Choi C, Hailu T, Tulbert BH, Cusack CA, et al. The presence and impact of biofilm-producing staphylococci in atopic dermatitis. JAMA Dermatol. 2014;150(3):260–5. The initial study reporting near-ubiquitous S. aureus biofilms in AD lesional skin and showing the activation of TLR2 adjacent to the sweat ducts. PubMedCrossRefGoogle Scholar
  15. 15.
    Nutten S. Atopic dermatitis: global epidemiology and risk factors. Ann Nutr Metab. 2015;66(Suppl 1):8–16.PubMedCrossRefGoogle Scholar
  16. 16.
    Williams H, Flohr C. How epidemiology has challenged 3 prevailing concepts about atopic dermatitis. J Allergy Clin Immunol. 2006;118(1):209–13.PubMedCrossRefGoogle Scholar
  17. 17.
    Bieber T. Atopic dermatitis. N Engl J Med. 2008;358(14):1483–94.PubMedCrossRefGoogle Scholar
  18. 18.
    Williams H, Stewart A, von Mutius E, Cookson W, Anderson HR. Is eczema really on the increase worldwide? J Allergy Clin Immunol. 2008;121(4):947–54. e15PubMedCrossRefGoogle Scholar
  19. 19.
    Strachan D, Sibbald B, Weiland S, Ait-Khaled N, Anabwani G, Anderson HR, et al. Worldwide variations in prevalence of symptoms of allergic rhinoconjunctivitis in children: the International Study of Asthma and Allergies in Childhood (ISAAC). Pediatr Allergy Immunol. 1997;8(4):161–76.PubMedCrossRefGoogle Scholar
  20. 20.
    Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9(4):244–53.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Wang M, Karlsson C, Olsson C, Adlerberth I, Wold AE, Strachan DP, et al. Reduced diversity in the early fecal microbiota of infants with atopic eczema. J Allergy Clin Immunol. 2008;121(1):129–34.PubMedCrossRefGoogle Scholar
  22. 22.
    Okada H, Kuhn C, Feillet H, Bach JF. The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update. Clin Exp Immunol. 2010;160(1):1–9.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    United Nations. World Urbanization Prospects; the 2007 revision. United Nations Department of Economic and Social Affairs, Population Division.. New York; 2008.Google Scholar
  24. 24.
    Bendiks M, Kopp MV. The relationship between advances in understanding the microbiome and the maturing hygiene hypothesis. Curr Allergy Asthma Rep. 2013;13(5):487–94.PubMedCrossRefGoogle Scholar
  25. 25.
    Agrawal R, Woodfolk JA. Skin barrier defects in atopic dermatitis. Curr Allergy Asthma Rep. 2014;14(5):433.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Ong PY, Leung DY. Bacterial and viral infections in atopic dermatitis: a comprehensive review. Clin Rev Allergy Immunol. 2016;51(3):329–37.PubMedCrossRefGoogle Scholar
  27. 27.
    Lakatos G, Soproni K, Doka A, Miklosi A. A comparative approach to dogs’ (Canis familiaris) and human infants’ comprehension of various forms of pointing gestures. Anim Cogn. 2009;12(4):621–31.PubMedCrossRefGoogle Scholar
  28. 28.
    Kawasaki H, Nagao K, Kubo A, Hata T, Shimizu A, Mizuno H, et al. Altered stratum corneum barrier and enhanced percutaneous immune responses in filaggrin-null mice. J Allergy Clin Immunol. 2012;129(6):1538–46. e6PubMedCrossRefGoogle Scholar
  29. 29.
    Oyoshi MK, Murphy GF, Geha RS. Filaggrin-deficient mice exhibit TH17-dominated skin inflammation and permissiveness to epicutaneous sensitization with protein antigen. J Allergy Clin Immunol. 2009;124(3):485–93. 93 e1PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Gupta J, Grube E, Ericksen MB, Stevenson MD, Lucky AW, Sheth AP, et al. Intrinsically defective skin barrier function in children with atopic dermatitis correlates with disease severity. J Allergy Clin Immunol. 2008;121(3):725–30. e2PubMedCrossRefGoogle Scholar
  31. 31.
    de Veer SJ, Furio L, Harris JM, Hovnanian A. Proteases: common culprits in human skin disorders. Trends Mol Med. 2014;20(3):166–78.PubMedCrossRefGoogle Scholar
  32. 32.
    Fischer J, Meyer-Hoffert U. Regulation of kallikrein-related peptidases in the skin—from physiology to diseases to therapeutic options. Thromb Haemost. 2013;110(3):442–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Deraison C, Bonnart C, Lopez F, Besson C, Robinson R, Jayakumar A, et al. LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Mol Biol Cell. 2007;18(9):3607–19.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Weidinger S, Baurecht H, Wagenpfeil S, Henderson J, Novak N, Sandilands A, et al. Analysis of the individual and aggregate genetic contributions of previously identified serine peptidase inhibitor Kazal type 5 (SPINK5), kallikrein-related peptidase 7 (KLK7), and filaggrin (FLG) polymorphisms to eczema risk. J Allergy Clin Immunol. 2008;122(3):560–8. e4PubMedCrossRefGoogle Scholar
  35. 35.
    Walley AJ, Chavanas S, Moffatt MF, Esnouf RM, Ubhi B, Lawrence R, et al. Gene polymorphism in Netherton and common atopic disease. Nat Genet. 2001;29(2):175–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Wang XW, Wang JJ, Gutowska-Owsiak D, Salimi M, Selvakumar TA, Gwela A, et al. Deficiency of filaggrin regulates endogenous cysteine protease activity, leading to impaired skin barrier function. Clin Exp Dermatol. 2017;42(6):622–31.PubMedCrossRefGoogle Scholar
  37. 37.
    Williams MR, Nakatsuji T, Sanford JA, Vrbanac AF, Gallo RL. Staphylococcus aureus induces increased serine protease activity in keratinocytes. J Invest Dermatol. 2017;137(2):377–84.PubMedCrossRefGoogle Scholar
  38. 38.
    Gallo RL. Human skin is the largest epithelial surface for interaction with microbes. J Invest Dermatol. 2017;137(6):1213–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Dybboe R, Bandier J, Skov L, Engstrand L, Johansen JD. The role of the skin microbiome in atopic dermatitis: a systematic review. Br J Dermatol. 2017.
  40. 40.
    Belkaid Y, Segre JA. Dialogue between skin microbiota and immunity. Science (New York, NY). 2014;346(6212):954–9.CrossRefGoogle Scholar
  41. 41.
    SanMiguel A, Grice EA. Interactions between host factors and the skin microbiome. Cell Mol Life Sci. 2015;72(8):1499–515.PubMedCrossRefGoogle Scholar
  42. 42.
    Kong HH. Skin microbiome: genomics-based insights into the diversity and role of skin microbes. Trends Mol Med. 2011;17(6):320–8.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kennedy EA, Connolly J, Hourihane JO, Fallon PG, McLean WH, Murray D, et al. Skin microbiome before development of atopic dermatitis: early colonization with commensal staphylococci at 2 months is associated with a lower risk of atopic dermatitis at 1 year. J Allergy Clin Immunol. 2017;139(1):166–72.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    •• Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22(5):850–9. A study describing dysbiosis in active AD lesions using 16S rRNA sequencing, showing increased prevalence of both S. aureus and S. epidermidis . PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Poretsky R, Rodriguez RL, Luo C, Tsementzi D, Konstantinidis KT. Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS One. 2014;9(4):e93827.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    •• Byrd AL, Deming C, Cassidy SKB, Harrison OJ, Ng WI, Conlan S, et al. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci Transl Med. 2017;9(397):eaal4651. A study using metagenomic shotgun sequencing to identify strain-level differences in S. aureus and S. epidermidis colonization in pediatric AD patients. PubMedCrossRefGoogle Scholar
  47. 47.
    •• Oh J, Byrd AL, Deming C, Conlan S, Program NCS, Kong HH, et al. Biogeography and individuality shape function in the human skin metagenome. Nature. 2014;514(7520):59–64. The first metagenomic survey of different healthy human skin sites, which lays the foundation for studies to assess changes of the skin microbiome in disease. PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Brauweiler AM, Goleva E, Leung DY. Th2 cytokines increase Staphylococcus aureus alpha toxin-induced keratinocyte death through the signal transducer and activator of transcription 6 (STAT6). J Invest Dermatol. 2014;134(8):2114–21.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Brauweiler AM, Bin L, Kim BE, Oyoshi MK, Geha RS, Goleva E, et al. Filaggrin-dependent secretion of sphingomyelinase protects against staphylococcal alpha-toxin-induced keratinocyte death. J Allergy Clin Immunol. 2013;131(2):421–7. e1-2PubMedCrossRefGoogle Scholar
  50. 50.
    Amagai M, Matsuyoshi N, Wang ZH, Andl C, Stanley JR. Toxin in bullous impetigo and staphylococcal scalded-skin syndrome targets desmoglein 1. Nat Med. 2000;6(11):1275–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Hanakawa Y, Schechter NM, Lin C, Nishifuji K, Amagai M, Stanley JR. Enzymatic and molecular characteristics of the efficiency and specificity of exfoliative toxin cleavage of desmoglein 1. J Biol Chem. 2004;279(7):5268–77.PubMedCrossRefGoogle Scholar
  52. 52.
    Amagai M, Yamaguchi T, Hanakawa Y, Nishifuji K, Sugai M, Stanley JR. Staphylococcal exfoliative toxin B specifically cleaves desmoglein 1. J Invest Dermat. 2002;118(5):845–50.CrossRefGoogle Scholar
  53. 53.
    Hauk PJ, Hamid QA, Chrousos GP, Leung DY. Induction of corticosteroid insensitivity in human PBMCs by microbial superantigens. J Allergy Clin Immunol. 2000;105(4):782–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Schlievert PM, Case LC, Strandberg KL, Abrams BB, Leung DY. Superantigen profile of Staphylococcus aureus isolates from patients with steroid-resistant atopic dermatitis. Clin Infect Dis. 2008;46(10):1562–7.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G. The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest. 2003;112(10):1466–77.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Pletzer D, Hancock RE. Antibiofilm peptides: potential as broad-spectrum agents. J Bacteriol. 2016;198(19):2572–8.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Watters C, Fleming D, Bishop D, Rumbaugh KP. Host responses to biofilm. Prog Mol Biol Transl Sci. 2016;142:193–239.PubMedCrossRefGoogle Scholar
  58. 58.
    Otto M. Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu Rev Med. 2013;64:175–88.PubMedCrossRefGoogle Scholar
  59. 59.
    Otto M. Staphylococcal biofilms. Curr Top Microbiol Immunol. 2008;322:207–28.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Vlassova N, Han A, Zenilman JM, James G, Lazarus GS. New horizons for cutaneous microbiology: the role of biofilms in dermatological disease. Br J Dermatol. 2011;165(4):751–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Otto M. Staphylococcus epidermidis—the ‘accidental’ pathogen. Nat Rev Microbiol. 2009;7(8):555–67.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Moormeier DE, Bose JL, Horswill AR, Bayles KW. Temporal and stochastic control of Staphylococcus aureus biofilm development. MBio. 2014;5(5):e01341–14.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Sharp JA, Echague CG, Hair PS, Ward MD, Nyalwidhe JO, Geoghegan JA, et al. Staphylococcus aureus surface protein SdrE binds complement regulator factor H as an immune evasion tactic. PLoS One. 2012;7(5):e38407.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Foster TJ, Hook M. Surface protein adhesins of Staphylococcus aureus. Trends Microbiol. 1998;6(12):484–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Ponnuraj K, Bowden MG, Davis S, Gurusiddappa S, Moore D, Choe D, et al. A “dock, lock, and latch” structural model for a staphylococcal adhesin binding to fibrinogen. Cell. 2003;115(2):217–28.PubMedCrossRefGoogle Scholar
  66. 66.
    Zhang X, Wu M, Zhuo W, Gu J, Zhang S, Ge J, et al. Crystal structures of Bbp from Staphylococcus aureus reveal the ligand binding mechanism with Fibrinogen alpha. Protein Cell. 2015;6(10):757–66.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Ganesh VK, Rivera JJ, Smeds E, Ko YP, Bowden MG, Wann ER, et al. A structural model of the Staphylococcus aureus ClfA-fibrinogen interaction opens new avenues for the design of anti-staphylococcal therapeutics. PLoS Pathog. 2008;4(11):e1000226.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Xiang H, Feng Y, Wang J, Liu B, Chen Y, Liu L, et al. Crystal structures reveal the multi-ligand binding mechanism of Staphylococcus aureus ClfB. PLoS Pathog. 2012;8(6):e1002751.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Askarian F, Ajayi C, Hanssen AM, van Sorge NM, Pettersen I, Diep DB, et al. The interaction between Staphylococcus aureus SdrD and desmoglein 1 is important for adhesion to host cells. Sci Rep. 2016;6:22134.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Barbu EM, Ganesh VK, Gurusiddappa S, Mackenzie RC, Foster TJ, Sudhof TC, et al. Beta-neurexin is a ligand for the Staphylococcus aureus MSCRAMM SdrC. PLoS Pathog. 2010;6(1):e1000726.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Cho SH, Strickland I, Boguniewicz M, Leung DY. Fibronectin and fibrinogen contribute to the enhanced binding of Staphylococcus aureus to atopic skin. J Allergy Clin Immunol. 2001;108(2):269–74.PubMedCrossRefGoogle Scholar
  72. 72.
    Abraham NM, Jefferson KK. Staphylococcus aureus clumping factor B mediates biofilm formation in the absence of calcium. Microbiology. 2012;158(Pt 6):1504–12.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Fleury OM, McAleer MA, Feuillie C, Formosa-Dague C, Sansevere E, Bennett DE, et al. Clumping Factor B promotes adherence of Staphylococcus aureus to corneocytes in atopic dermatitis. Infect Immun. 2017;85(6):e00994.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Vuong C, Voyich JM, Fischer ER, Braughton KR, Whitney AR, DeLeo FR, et al. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol. 2004;6(3):269–75.PubMedCrossRefGoogle Scholar
  75. 75.
    Formosa-Dague C, Feuillie C, Beaussart A, Derclaye S, Kucharikova S, Lasa I, et al. Sticky matrix: adhesion mechanism of the Staphylococcal polysaccharide intercellular adhesin. ACS Nano. 2016;10(3):3443–52.PubMedCrossRefGoogle Scholar
  76. 76.
    Cramton SE, Gerke C, Schnell NF, Nichols WW, Gotz F. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun. 1999;67(10):5427–33.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Cue D, Lei MG, Lee CY. Genetic regulation of the intercellular adhesion locus in Staphylococci. Front Cell Infect Microbiol. 2012;2:38.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Schaeffer CR, Hoang TN, Sudbeck CM, Alawi M, Tolo IE, Robinson DA, et al. Versatility of biofilm matrix molecules in Staphylococcus epidermidis clinical isolates and importance of polysaccharide intercellular adhesin expression during high shear stress. mSphere. 2016;1(5):e00165.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Yarawsky AE, English LR, Whitten ST, Herr AB. The proline/glycine-rich region of the biofilm adhesion protein Aap forms an extended stalk that resists compaction. J Mol Biol. 2017;429(2):261–79.PubMedCrossRefGoogle Scholar
  80. 80.
    Hussain M, Herrmann M, von Eiff C, Perdreau-Remington F, Peters G. A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect Immun. 1997;65(2):519–24.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Paharik AE, Kotasinska M, Both A, Hoang TN, Buttner H, Roy P, et al. The metalloprotease SepA governs processing of accumulation-associated protein and shapes intercellular adhesive surface properties in Staphylococcus epidermidis. Mol Microbiol. 2017;103(5):860–74.PubMedCrossRefGoogle Scholar
  82. 82.
    Rohde H, Burdelski C, Bartscht K, Hussain M, Buck F, Horstkotte MA, et al. Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol Microbiol. 2005;55(6):1883–95.PubMedCrossRefGoogle Scholar
  83. 83.
    Corrigan RM, Rigby D, Handley P, Foster TJ. The role of Staphylococcus aureus surface protein SasG in adherence and biofilm formation. Microbiology. 2007;153(Pt 8):2435–46.PubMedCrossRefGoogle Scholar
  84. 84.
    Conrady DG, Brescia CC, Horii K, Weiss AA, Hassett DJ, Herr AB. A zinc-dependent adhesion module is responsible for intercellular adhesion in staphylococcal biofilms. Proc Natl Acad Sci U S A. 2008;105(49):19456–61.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Herr AB, Conrady DG. Thermodynamic analysis of metal ion-induced protein assembly. Methods Enzymol. 2011;488:101–21.PubMedCrossRefGoogle Scholar
  86. 86.
    Conrady DG, Wilson JJ, Herr AB. Structural basis for Zn2+-dependent intercellular adhesion in staphylococcal biofilms. Proc Natl Acad Sci U S A. 2013;110(3):E202–11.PubMedCrossRefGoogle Scholar
  87. 87.
    Shelton CL, Conrady DG, Herr AB. Functional consequences of B-repeat sequence variation in the staphylococcal biofilm protein Aap: deciphering the assembly code. Biochem J. 2017;474(3):427–43.PubMedCrossRefGoogle Scholar
  88. 88.
    Chaton CT, Herr AB. Defining the metal specificity of a multifunctional biofilm adhesion protein. Protein Sci. 2017;26:1964–73.PubMedCrossRefGoogle Scholar
  89. 89.
    Geoghegan JA, Corrigan RM, Gruszka DT, Speziale P, O'Gara JP, Potts JR, et al. Role of surface protein SasG in biofilm formation by Staphylococcus aureus. J Bacteriol. 2010;192(21):5663–73.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    • Formosa-Dague C, Speziale P, Foster TJ, Geoghegan JA, Dufrene YF. Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG. Proc Natl Acad Sci U S A. 2016;113(2):410–5. A study demonstrating Zn2+-dependent intercellular adhesion between S. aureus cells mediated by SasG, and heterophilic adhesion between S. aureus and S. epidermidis mediated by SasG/Aap, using single-cell force microscopy. PubMedCrossRefGoogle Scholar
  91. 91.
    Peters BM, Jabra-Rizk MA, O'May GA, Costerton JW, Shirtliff ME. Polymicrobial interactions: impact on pathogenesis and human disease. Clin Microbiol Rev. 2012;25(1):193–213.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Stacy A, McNally L, Darch SE, Brown SP, Whiteley M. The biogeography of polymicrobial infection. Nat Rev Microbiol. 2016;14(2):93–105.PubMedCrossRefGoogle Scholar
  93. 93.
    Wolcott R, Costerton JW, Raoult D, Cutler SJ. The polymicrobial nature of biofilm infection. Clin Microbiol Infect. 2013;19(2):107–12.PubMedCrossRefGoogle Scholar
  94. 94.
    Gabrilska RA, Rumbaugh KP. Biofilm models of polymicrobial infection. Future Microbiol. 2015;10(12):1997–2015.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Silverman RJ, Nobbs AH, Vickerman MM, Barbour ME, Jenkinson HF. Interaction of Candida albicans cell wall Als3 protein with Streptococcus gordonii SspB adhesin promotes development of mixed-species communities. Infect Immun. 2010;78(11):4644–52.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Stewart EJ, Payne DE, Ma TM, VanEpps JS, Boles BR, Younger JG, et al. Effect of antimicrobial and physical treatments on growth of multispecies Staphylococcal biofilms. Appl Environ Microbiol. 2017;83(12):e03483-16.Google Scholar
  97. 97.
    Stoodley P, Conti SF, DeMeo PJ, Nistico L, Melton-Kreft R, Johnson S, et al. Characterization of a mixed MRSA/MRSE biofilm in an explanted total ankle arthroplasty. FEMS Immunol Med Microbiol. 2011;62(1):66–74.PubMedCrossRefGoogle Scholar
  98. 98.
    Zhang LJ, Gallo RL. Antimicrobial peptides. Curr Biol. 2016;26(1):R14–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med. 2002;347(15):1151–60.PubMedCrossRefGoogle Scholar
  100. 100.
    Powers CE, McShane DB, Gilligan PH, Burkhart CN, Morrell DS. Microbiome and pediatric atopic dermatitis. J Dermatol. 2015;42(12):1137–42.PubMedCrossRefGoogle Scholar
  101. 101.
    Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CF, et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol. 2003;171(6):3262–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Hata TR, Gallo RL. Antimicrobial peptides, skin infections, and atopic dermatitis. Semin Cutan Med Surg. 2008;27(2):144–50.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    •• Nakatsuji T, Chen TH, Narala S, Chun KA, Two AM, Yun T, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med. 2017;9(378):eaah4680. A study describing AMPs that inhibit S. aureus from strains of coagulase-negative staphylococci common on the skin of healthy individuals but rare in AD patients. PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    de Koning HD, Kamsteeg M, Rodijk-Olthuis D, van Vlijmen-Willems IM, van Erp PE, Schalkwijk J, et al. Epidermal expression of host response genes upon skin barrier disruption in normal skin and uninvolved skin of psoriasis and atopic dermatitis patients. J Invest Dermatol. 2011;131(1):263–6.PubMedCrossRefGoogle Scholar
  105. 105.
    • Scherr TD, Hanke ML, Huang O, James DB, Horswill AR, Bayles KW, et al. Staphylococcus aureus biofilms induce macrophage dysfunction through leukocidin AB and alpha-toxin. MBio. 2015;6(4):e01021. A paper identifying protein factors secreted from S. aureus biofilms that inhibit macrophage phagocytosis, illustrating how S. aureus biofilms can evade host defense. PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Scherr TD, Heim CE, Morrison JM, Kielian T. Hiding in plain sight: interplay between Staphylococcal biofilms and host immunity. Front Immunol. 2014;5:37.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Paharik AE, Horswill AR. The staphylococcal biofilm: adhesins, regulation, and host response. Microbiol Spectr. 2016;4(2):VMBF-0022-2015.Google Scholar
  108. 108.
    Thurlow LR, Hanke ML, Fritz T, Angle A, Aldrich A, Williams SH, et al. Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J Immunol. 2011;186(11):6585–96.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Cerca F, Andrade F, Franca A, Andrade EB, Ribeiro A, Almeida AA, et al. Staphylococcus epidermidis biofilms with higher proportions of dormant bacteria induce a lower activation of murine macrophages. J Med Microbiol. 2011;60(Pt 12):1717–24.PubMedCrossRefGoogle Scholar
  110. 110.
    • Tankersley A, Frank MB, Bebak M, Brennan R. Early effects of Staphylococcus aureus biofilm secreted products on inflammatory responses of human epithelial keratinocytes. J Inflamm (Lond). 2014;11:17. A paper demonstrating that S. aureus biofilm conditioned media induces significantly stronger inflammatory responses in human keratinocytes compared to planktonic conditioned media. CrossRefGoogle Scholar
  111. 111.
    Takai T. TSLP expression: cellular sources, triggers, and regulatory mechanisms. Allergol Int. 2012;61(1):3–17.PubMedCrossRefGoogle Scholar
  112. 112.
    Wilson SR, The L, Batia LM, Beattie K, Katibah GE, McClain SP, et al. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell. 2013;155(2):285–95.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    • Son ED, Kim HJ, Park T, Shin K, Bae IH, Lim KM, et al. Staphylococcus aureus inhibits terminal differentiation of normal human keratinocytes by stimulating interleukin-6 secretion. J Dermatol Sci. 2014;74(1):64–71. A study exploring the impact of S. aureus on keratinocyte differentiation, describing the increase in IL-6 and decrease in filaggrin and other differentiation markers upon exposure to S. aureus . PubMedCrossRefGoogle Scholar
  114. 114.
    den Reijer PM, Haisma EM, Lemmens-den Toom NA, Willemse J, Koning RI, Demmers JA, et al. Detection of alpha-toxin and other virulence factors in biofilms of Staphylococcus aureus on polystyrene and a human epidermal model. PLoS One. 2016;11(1):e0145722.CrossRefGoogle Scholar
  115. 115.
    Eriksson S, van der Plas MJA, Morgelin M, Sonesson A. Antibacterial and antibiofilm effects of sodium hypochlorite against Staphylococcus aureus isolates derived from patients with atopic dermatitis. Br J Dermatol. 2017;177(2):513–21.PubMedCrossRefGoogle Scholar
  116. 116.
    Batoni G, Maisetta G, Esin S. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. Biochim Biophys Acta. 2016;1858(5):1044–60.PubMedCrossRefGoogle Scholar
  117. 117.
    Boguniewicz M, Leung DY. Atopic dermatitis: a disease of altered skin barrier and immune dysregulation. Immunol Rev. 2011;242(1):233–46.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Haisma EM, de Breij A, Chan H, van Dissel JT, Drijfhout JW, Hiemstra PS, et al. LL-37-derived peptides eradicate multidrug-resistant Staphylococcus aureus from thermally wounded human skin equivalents. Antimicrob Agents Chemother. 2014;58(8):4411–9.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Myles IA, Williams KW, Reckhow JD, Jammeh ML, Pincus NB, Sastalla I, et al. Transplantation of human skin microbiota in models of atopic dermatitis. JCI Insight. 2016;1(10):e86955.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Immunology Graduate ProgramCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  2. 2.Division of Asthma ResearchCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  3. 3.Division of ImmunobiologyCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  4. 4.Division of Infectious DiseasesCincinnati Children’s Hospital Medical CenterCincinnatiUSA

Personalised recommendations