Skip to main content

Advertisement

Log in

The Potential for Emerging Microbiome-Mediated Therapeutics in Asthma

  • Asthma (WJ Calhoun and V Ortega, Section Editors)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In terms of immune regulating functions, analysis of the microbiome has led the development of therapeutic strategies that may be applicable to asthma management. This review summarizes the current literature on the gut and lung microbiota in asthma pathogenesis with a focus on the roles of innate molecules and new microbiome-mediated therapeutics.

Recent Findings

Recent clinical and basic studies to date have identified several possible therapeutics that can target innate immunity and the microbiota in asthma. Some of these drugs have shown beneficial effects in the treatment of certain asthma phenotypes and for protection against asthma during early life.

Summary

Current clinical evidence does not support the use of these therapies for effective treatment of asthma. The integration of the data regarding microbiota with technologic advances, such as next generation sequencing and omics offers promise. Combining comprehensive bioinformatics, new molecules and approaches may shape future asthma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. GINA guidelines. From the Global Strategy for Asthma Management and Prevention, Global Initiative for Asthma (GINA). Revised asthma guidelines 2016. http://www.ginasthma.org/; 2016. Accessed July 26, 2016.

  2. National Asthma Education and Prevention Program: Expert panel report III: guidelines for the diagnosis and management of asthma. Bethesda, MD: National Heart, Lung, and Blood Institute, 2007. (NIH publication no. 08–4051). www.nhlbi.nih.gov/guidelines/asthma/asthgdln.htm. Accessed on May 31, 2016.

  3. Bjorksten B, Sepp E, Julge K, Voor T, Mikelsaar M. Allergy development and the intestinal microflora during the first year of life. J Allergy Clin Immunol. 2001;108(4):516–20.

    Article  CAS  PubMed  Google Scholar 

  4. Kalliomaki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol. 2001;107(1):129–34.

    Article  CAS  PubMed  Google Scholar 

  5. Penders J, Thijs C, van den Brandt PA, Kummeling I, Snijders B, Stelma F, et al. Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study. Gut. 2007;56(5):661–7.

    Article  CAS  PubMed  Google Scholar 

  6. Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, et al. Disordered microbial communities in asthmatic airways. PLoS One. 2010;5(1):e8578.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Green BJ, Wiriyachaiporn S, Grainge C, Rogers GB, Kehagia V, Lau L, et al. Potentially pathogenic airway bacteria and neutrophilic inflammation in treatment resistant severe asthma. PLoS One. 2014;9(6):e100645.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Abraham JH, Finn PW, Milton DK, Ryan LM, Perkins DL, Gold DR. Infant home endotoxin is associated with reduced allergen-stimulated lymphocyte proliferation and IL-13 production in childhood. J Allergy Clin Immunol. 2005;116(2):431–7.

    Article  CAS  PubMed  Google Scholar 

  9. Riedler J, Braun-Fahrlander C, Eder W, Schreuer M, Waser M, Maisch S, et al. Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet. 2001;358(9288):1129–33.

    Article  CAS  PubMed  Google Scholar 

  10. Schuijs MJ, Willart MA, Vergote K, Gras D, Deswarte K, Ege MJ, et al. Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells. Science. 2015;349(6252):1106–10.

    Article  CAS  PubMed  Google Scholar 

  11. •• Stein MM, Hrusch CL, Gozdz J, Igartua C, Pivniouk V, Murray SE, et al. Innate immunity and asthma risk in Amish and Hutterite farm children. N Engl J Med. 2016;375(5):411–21. This study presents evidence that a rich microbe content in household dust enhances immunity and the differences in the incidence of asthma among Amish versus the genetically related Hutterites may be due to lifestyle variations that result in differences in the environmental microbiome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bizzintino J, Lee WM, Laing IA, Vang F, Pappas T, Zhang G, et al. Association between human rhinovirus C and severity of acute asthma in children. Eur Respir J. 2011;37(5):1037–42.

    Article  CAS  PubMed  Google Scholar 

  13. Freymuth F, Vabret A, Brouard J, Toutain F, Verdon R, Petitjean J, et al. Detection of viral, Chlamydia pneumoniae and Mycoplasma pneumoniae infections in exacerbations of asthma in children. J Clin Virol. 1999;13(3):131–9.

    Article  CAS  PubMed  Google Scholar 

  14. • Backhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17(5):690–703. This study showed breast feeding had a major impact on early microbiota composition by applying metagenomic analysis on fecal samples from a large cohort of Swedish infants and their mothers.

  15. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14.

    Article  Google Scholar 

  16. Rajilic-Stojanovic M, Smidt H, de Vos WM. Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol. 2007;9(9):2125–36.

    Article  PubMed  Google Scholar 

  17. • Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016;22(10):1187–91. Findings of this study is suggesting that the neonatal gut microbiota influences susceptibility to childhood allergic asthma, via alterations in the gut microenvironment that influence CD4 + T–cell populations and function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gdalevich M, Mimouni D, Mimouni M. Breast-feeding and the risk of bronchial asthma in childhood: a systematic review with meta-analysis of prospective studies. J Pediatr. 2001;139(2):261–6.

    Article  CAS  PubMed  Google Scholar 

  19. Arrieta MC, Stiemsma LT, Dimitriu PA, Thorson L, Russell S, Yurist-Doutsch S, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med. 2015;7(307):307ra152.

    Article  PubMed  Google Scholar 

  20. Berni Canani R, Sangwan N, Stefka AT, Nocerino R, Paparo L, Aitoro R, et al. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants. ISME J. 2016;10(3):742–50.

    Article  CAS  PubMed  Google Scholar 

  21. Bisgaard H, Hermansen MN, Buchvald F, Loland L, Halkjaer LB, Bonnelykke K, et al. Childhood asthma after bacterial colonization of the airway in neonates. N Engl J Med. 2007;357(15):1487–95.

    Article  CAS  PubMed  Google Scholar 

  22. Rosas-Salazar C, Shilts MH, Tovchigrechko A, Chappell JD, Larkin EK, Nelson KE, et al. Nasopharyngeal microbiome in respiratory syncytial virus resembles profile associated with increased childhood asthma risk. Am J Respir Crit Care Med. 2016;193(10):1180–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Teo SM, Mok D, Pham K, Kusel M, Serralha M, Troy N, et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe. 2015;17(5):704–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bacharier LB, Guilbert TW, Mauger DT, Boehmer S, Beigelman A, Fitzpatrick AM, et al. Early administration of azithromycin and prevention of severe lower respiratory tract illnesses in preschool children with a history of such illnesses: a randomized clinical trial. JAMA. 2015;314(19):2034–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang YJ, Nelson CE, Brodie EL, Desantis TZ, Baek MS, Liu J, et al. Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. J Allergy Clin Immunol. 2011;127(2):372–81. e1-3

    Article  PubMed  Google Scholar 

  26. Huang YJ, Nariya S, Harris JM, Lynch SV, Choy DF, Arron JR, et al. The airway microbiome in patients with severe asthma: associations with disease features and severity. J Allergy Clin Immunol. 2015;136(4):874–84.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Goleva E, Jackson LP, Harris JK, Robertson CE, Sutherland ER, Hall CF, et al. The effects of airway microbiome on corticosteroid responsiveness in asthma. Am J Respir Crit Care Med. 2013;188(10):1193–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. •• Denner DR, Sangwan N, Becker JB, Hogarth DK, Oldham J, Castillo J, et al. Corticosteroid therapy and airflow obstruction influence the bronchial microbiome, which is distinct from that of bronchoalveolar lavage in asthmatic airways. J Allergy Clin Immunol. 2016;137(5):1398–405 e3. This article reports the differences in relative abundance of potentially pathogenic taxa between asthmatic subjects with the greatest degree of obstruction and those using oral corticoseroid therapy and asthmatic subjects with milder disease.

    Article  CAS  PubMed  Google Scholar 

  29. Segal LN, Clemente JC, Tsay JC, Koralov SB, Keller BC, Wu BG, et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat Microbiol. 2016;1:16031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang YJ. Asthma microbiome studies and the potential for new therapeutic strategies. Curr Allergy Asthma Rep. 2013;13(5):453–61.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lin KW, Li J, Finn PW. Emerging pathways in asthma: innate and adaptive interactions. Biochim Biophys Acta. 2011;1810(11):1052–8.

    Article  CAS  PubMed  Google Scholar 

  32. Suarez CJ, Parker NJ, Finn PW. Innate immune mechanism in allergic asthma. Curr Allergy Asthma Rep. 2008;8(5):451–9.

    Article  CAS  PubMed  Google Scholar 

  33. Finn PW, Bigby TD. Innate immunity and asthma. Proc Am Thorac Soc. 2009;6(3):260–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aryan Z, Holgate ST, Radzioch D, Rezaei N. A new era of targeting the ancient gatekeepers of the immune system: toll-like agonists in the treatment of allergic rhinitis and asthma. Int Arch Allergy Immunol. 2014;164(1):46–63.

    Article  CAS  PubMed  Google Scholar 

  35. Soumelis V, Reche PA, Kanzler H, Yuan W, Edward G, Homey B, et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol. 2002;3(7):673–80.

    CAS  PubMed  Google Scholar 

  36. Ellwood P, Asher MI, Garcia-Marcos L, Williams H, Keil U, Robertson C, et al. Do fast foods cause asthma, rhinoconjunctivitis and eczema? Global findings from the International Study of Asthma and Allergies in Childhood (ISAAC) phase three. Thorax. 2013;68(4):351–60.

    Article  PubMed  Google Scholar 

  37. Garcia-Larsen V, Del Giacco SR, Moreira A, Bonini M, Charles D, Reeves T, et al. Asthma and dietary intake: an overview of systematic reviews. Allergy. 2016;71(4):433–42.

    Article  CAS  PubMed  Google Scholar 

  38. Elliott L, Henderson J, Northstone K, Chiu GY, Dunson D, London SJ. Prospective study of breast-feeding in relation to wheeze, atopy, and bronchial hyperresponsiveness in the Avon Longitudinal Study of Parents and Children (ALSPAC). J Allergy Clin Immunol. 2008;122(1):49–54. e1-3

    Article  PubMed  PubMed Central  Google Scholar 

  39. Feehley T, Stefka AT, Cao S, Nagler CR. Microbial regulation of allergic responses to food. Semin Immunopathol. 2012;34(5):671–88.

    Article  CAS  PubMed  Google Scholar 

  40. Paturi G, Butts C, Monro J, Nones K, Martell S, Butler R, et al. Cecal and colonic responses in rats fed 5 or 30% corn oil diets containing either 7.5% broccoli dietary fiber or microcrystalline cellulose. J Agric Food Chem. 2010;58(10):6510–5.

    Article  CAS  PubMed  Google Scholar 

  41. Bottcher MF, Nordin EK, Sandin A, Midtvedt T, Bjorksten B. Microflora-associated characteristics in faeces from allergic and nonallergic infants. Clin Exp Allergy. 2000;30(11):1590–6.

    Article  CAS  PubMed  Google Scholar 

  42. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bengmark S, Martindale R. Prebiotics and synbiotics in clinical medicine. Nutr Clin Pract. 2005;20(2):244–61.

    Article  PubMed  Google Scholar 

  44. Osborn DA, Sinn JK. Prebiotics in infants for prevention of allergy. Cochrane Database Syst Rev. 2013;3:CD006474.

    Google Scholar 

  45. Food and Agriculture Organization, World Health Organization (FAO/WHO)) Report of Joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. FAO/WHO Report no. 10-1-2001. WHO INT; Córdoba, Argentina.

  46. Elazab N, Mendy A, Gasana J, Vieira ER, Quizon A, Forno E. Probiotic administration in early life, atopy, and asthma: a meta-analysis of clinical trials. Pediatrics. 2013;132(3):e666–76.

    Article  PubMed  Google Scholar 

  47. Rauch M, Lynch SV. The potential for probiotic manipulation of the gastrointestinal microbiome. Curr Opin Biotechnol. 2012;23(2):192–201.

    Article  CAS  PubMed  Google Scholar 

  48. Hougee S, Vriesema AJ, Wijering SC, Knippels LM, Folkerts G, Nijkamp FP, et al. Oral treatment with probiotics reduces allergic symptoms in ovalbumin-sensitized mice: a bacterial strain comparative study. Int Arch Allergy Immunol. 2010;151(2):107–17.

    Article  CAS  PubMed  Google Scholar 

  49. Yu J, Jang SO, Kim BJ, Song YH, Kwon JW, Kang MJ, et al. The effects of lactobacillus rhamnosus on the prevention of asthma in a murine model. Allergy Asthma Immunol Res. 2010;2(3):199–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pellaton C, Nutten S, Thierry AC, Boudousquie C, Barbier N, Blanchard C, et al. Intragastric and intranasal administration of Lactobacillus paracasei NCC2461 modulates allergic airway inflammation in mice. Int J Inflam. 2012;2012:686739.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Di Felice G, Barletta B, Butteroni C, Corinti S, Tinghino R, Colombo P, et al. Use of probiotic bacteria for prevention and therapy of allergic diseases: studies in mouse model of allergic sensitization. J Clin Gastroenterol. 2008;42(Suppl 3 Pt 1):S130–2.

    Article  PubMed  Google Scholar 

  52. Daniel C, Repa A, Wild C, Pollak A, Pot B, Breiteneder H, et al. Modulation of allergic immune responses by mucosal application of recombinant lactic acid bacteria producing the major birch pollen allergen Bet v 1. Allergy. 2006;61(7):812–9.

    Article  CAS  PubMed  Google Scholar 

  53. Helin T, Haahtela S, Haahtela T. No effect of oral treatment with an intestinal bacterial strain, Lactobacillus rhamnosus (ATCC 53103), on birch-pollen allergy: a placebo-controlled double-blind study. Allergy. 2002;57(3):243–6.

    Article  CAS  PubMed  Google Scholar 

  54. Tamura M, Shikina T, Morihana T, Hayama M, Kajimoto O, Sakamoto A, et al. Effects of probiotics on allergic rhinitis induced by Japanese cedar pollen: randomized double-blind, placebo-controlled clinical trial. Int Arch Allergy Immunol. 2007;143(1):75–82.

    Article  PubMed  Google Scholar 

  55. Wang MF, Lin HC, Wang YY, Hsu CH. Treatment of perennial allergic rhinitis with lactic acid bacteria. Pediatr Allergy Immunol. 2004;15(2):152–8.

    Article  PubMed  Google Scholar 

  56. van de Pol MA, Lutter R, Smids BS, Weersink EJ, van der Zee JS. Synbiotics reduce allergen-induced T-helper 2 response and improve peak expiratory flow in allergic asthmatics. Allergy. 2011;66(1):39–47.

    Article  PubMed  Google Scholar 

  57. Wheeler JG, Shema SJ, Bogle ML, Shirrell MA, Burks AW, Pittler A, et al. Immune and clinical impact of Lactobacillus acidophilus on asthma. Ann Allergy Asthma Immunol. 1997;79(3):229–33.

    Article  CAS  PubMed  Google Scholar 

  58. Xu MQ, Cao HL, Wang WQ, Wang S, Cao XC, Yan F, et al. Fecal microbiota transplantation broadening its application beyond intestinal disorders. World J Gastroenterol. 2015;21(1):102–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Aroniadis OC, Brandt LJ, Greenberg A, Borody T, Kelly CR, Mellow M, et al. Long-term follow-up study of fecal microbiota transplantation for severe and/or complicated Clostridium difficile infection: a multicenter experience. J Clin Gastroenterol. 2016;50(5):398–402.

    PubMed  Google Scholar 

  60. Kraft M, Cassell GH, Pak J, Martin RJ. Mycoplasma pneumoniae and Chlamydia pneumoniae in asthma: effect of clarithromycin. Chest. 2002;121(6):1782–8.

    Article  CAS  PubMed  Google Scholar 

  61. Black PN, Blasi F, Jenkins CR, Scicchitano R, Mills GD, Rubinfeld AR, et al. Trial of roxithromycin in subjects with asthma and serological evidence of infection with chlamydia pneumoniae. Am J Respir Crit Care Med. 2001;164(4):536–41.

    Article  CAS  PubMed  Google Scholar 

  62. Asada M, Yoshida M, Suzuki T, Hatachi Y, Sasaki T, Yasuda H, et al. Macrolide antibiotics inhibit respiratory syncytial virus infection in human airway epithelial cells. Antivir Res. 2009;83(2):191–200.

    Article  CAS  PubMed  Google Scholar 

  63. Kobayashi Y, Wada H, Rossios C, Takagi D, Charron C, Barnes PJ, et al. A novel macrolide/fluoroketolide, solithromycin (CEM-101), reverses corticosteroid insensitivity via phosphoinositide 3-kinase pathway inhibition. Br J Pharmacol. 2013;169(5):1024–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ci X, Chu X, Xu X, Li H, Deng X. Short-term roxithromycin treatment attenuates airway inflammation via MAPK/NF-kappaB activation in a mouse model of allergic asthma. Inflamm Res. 2012;61(7):749–58.

    Article  CAS  PubMed  Google Scholar 

  65. Marjanovic N, Bosnar M, Michielin F, Wille DR, Anic-Milic T, Culic O, et al. Macrolide antibiotics broadly and distinctively inhibit cytokine and chemokine production by COPD sputum cells in vitro. Pharmacol Res. 2011;63(5):389–97.

    Article  CAS  PubMed  Google Scholar 

  66. Park JY, Kim HY, Lee JY, Kim KH, Jang MK, Lee JH, et al. Macrolide-affected Toll-like receptor 4 expression from Helicobacter pylori-infected monocytes does not modify interleukin-8 production. FEMS Immunol Med Microbiol. 2005;44(2):171–6.

    Article  CAS  PubMed  Google Scholar 

  67. Kew KM, Undela K, Kotortsi I, Ferrara G. Macrolides for chronic asthma. Cochrane Database Syst Rev. 2015;9:CD002997.

    Google Scholar 

  68. Wood LG, Simpson JL, Hansbro PM, Gibson PG. Potentially pathogenic bacteria cultured from the sputum of stable asthmatics are associated with increased 8-isoprostane and airway neutrophilia. Free Radic Res. 2010;44(2):146–54.

    Article  CAS  PubMed  Google Scholar 

  69. Simpson JL, Powell H, Boyle MJ, Scott RJ, Gibson PG. Clarithromycin targets neutrophilic airway inflammation in refractory asthma. Am J Respir Crit Care Med. 2008;177(2):148–55.

    Article  CAS  PubMed  Google Scholar 

  70. Kadota J, Mukae H, Ishii H, Nagata T, Kaida H, Tomono K, et al. Long-term efficacy and safety of clarithromycin treatment in patients with diffuse panbronchiolitis. Respir Med. 2003;97(7):844–50.

    Article  CAS  PubMed  Google Scholar 

  71. Hahn DL, Plane MB, Mahdi OS, Byrne GI. Secondary outcomes of a pilot randomized trial of azithromycin treatment for asthma. PLoS Clin Trials. 2006;1(2):e11.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kostadima E, Tsiodras S, Alexopoulos EI, Kaditis AG, Mavrou I, Georgatou N, et al. Clarithromycin reduces the severity of bronchial hyperresponsiveness in patients with asthma. Eur Respir J. 2004;23(5):714–7.

    Article  CAS  PubMed  Google Scholar 

  73. Slater M, Rivett DW, Williams L, Martin M, Harrison T, Sayers I, et al. The impact of azithromycin therapy on the airway microbiota in asthma. Thorax. 2014;69(7):673–4.

    Article  PubMed  Google Scholar 

  74. Redecke V, Hacker H, Datta SK, Fermin A, Pitha PM, Broide DH, et al. Cutting edge: activation of Toll-like receptor 2 induces a Th2 immune response and promotes experimental asthma. J Immunol. 2004;172(5):2739–43.

    Article  CAS  PubMed  Google Scholar 

  75. Velasco G, Campo M, Manrique OJ, Bellou A, He H, Arestides RS, et al. Toll-like receptor 4 or 2 agonists decrease allergic inflammation. Am J Respir Cell Mol Biol. 2005;32(3):218–24.

    Article  CAS  PubMed  Google Scholar 

  76. DuBuske LM, Frew AJ, Horak F, Keith PK, Corrigan CJ, Aberer W, et al. Ultrashort-specific immunotherapy successfully treats seasonal allergic rhinoconjunctivitis to grass pollen. Allergy Asthma Proc. 2011;32(3):239–47.

    Article  PubMed  Google Scholar 

  77. Rosewich M, Schulze J, Eickmeier O, Telles T, Rose MA, Schubert R, et al. Tolerance induction after specific immunotherapy with pollen allergoids adjuvanted by monophosphoryl lipid A in children. Clin Exp Immunol. 2010;160(3):403–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Casale TB, Kessler J, Romero FA. Safety of the intranasal toll-like receptor 4 agonist CRX-675 in allergic rhinitis. Ann Allergy Asthma Immunol. 2006;97(4):454–6.

    Article  CAS  PubMed  Google Scholar 

  79. Bortolatto J, Borducchi E, Rodriguez D, Keller AC, Faquim-Mauro E, Bortoluci KR, et al. Toll-like receptor 4 agonists adsorbed to aluminium hydroxide adjuvant attenuate ovalbumin-specific allergic airway disease: role of MyD88 adaptor molecule and interleukin-12/interferon-gamma axis. Clin Exp Allergy. 2008;38(10):1668–79.

    Article  CAS  PubMed  Google Scholar 

  80. Edwars MJ. Therapy directed against thymic stromal lymphopoietin. In: Hansel TT, Barnes PJ, editors. New drugs and targets for asthma and COPD. Prog Respir res, vol. 39. Basel: Karger; 2010. p. 55–9.

    Chapter  Google Scholar 

  81. Shikotra A, Choy DF, Ohri CM, Doran E, Butler C, Hargadon B, et al. Increased expression of immunoreactive thymic stromal lymphopoietin in patients with severe asthma. J Allergy Clin Immunol. 2012;129(1):104–11. e1-9

    Article  CAS  PubMed  Google Scholar 

  82. Ying S, O'Connor B, Ratoff J, Meng Q, Fang C, Cousins D, et al. Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease. J Immunol. 2008;181(4):2790–8.

    Article  CAS  PubMed  Google Scholar 

  83. Zhang F, Huang G, Hu B, Song Y, Shi Y. A soluble thymic stromal lymphopoietin (TSLP) antagonist, TSLPR-immunoglobulin, reduces the severity of allergic disease by regulating pulmonary dendritic cells 2011 [updated May; cited 164 2]. 2011/03/01:[256–64].

  84. Shi L, Leu SW, Xu F, Zhou X, Yin H, Cai L, et al. Local blockade of TSLP receptor alleviated allergic disease by regulating airway dendritic cells. Clin Immunol. 2008;129(2):202–10.

    Article  CAS  PubMed  Google Scholar 

  85. • Gauvreau GM, O'Byrne PM, Boulet LP, Wang Y, Cockcroft D, Bigler J, et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N Engl J Med. 2014;370(22):2102–10. This is the first study investigating the effect of fully human anti-TSLP monoclonal immunoglobulin G2λ in mild allergic asthma patients. Their findings showed that treatment with anti-TLSP immunglobulin may reduce allergen-induced bronchoconstriction and indexes of airway inflammation before and after allergen challenge.

  86. Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23(5):479–90.

    Article  CAS  PubMed  Google Scholar 

  87. Nabe T. Interleukin (IL)-33: new therapeutic target for atopic diseases. J Pharmacol Sci. 2014;126(2):85–91.

    Article  CAS  PubMed  Google Scholar 

  88. Kondo Y, Yoshimoto T, Yasuda K, Futatsugi-Yumikura S, Morimoto M, Hayashi N, et al. Administration of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia in the lungs in the absence of adaptive immune system. Int Immunol. 2008;20(6):791–800.

    Article  CAS  PubMed  Google Scholar 

  89. Mizutani N, Nabe T, Yoshino S. Interleukin-33 and alveolar macrophages contribute to the mechanisms underlying the exacerbation of IgE-mediated airway inflammation and remodelling in mice. Immunology. 2013;139(2):205–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Prefontaine D, Lajoie-Kadoch S, Foley S, Audusseau S, Olivenstein R, Halayko AJ, et al. Increased expression of IL-33 in severe asthma: evidence of expression by airway smooth muscle cells. J Immunol. 2009;183(8):5094–103.

    Article  CAS  PubMed  Google Scholar 

  91. Kim YH, Park CS, Lim DH, Ahn SH, Son BK, Kim JH, et al. Beneficial effect of anti-interleukin-33 on the murine model of allergic inflammation of the lower airway. J Asthma. 2012;49(7):738–43.

    Article  CAS  PubMed  Google Scholar 

  92. Liu X, Li M, Wu Y, Zhou Y, Zeng L, Huang T. Anti-IL-33 antibody treatment inhibits airway inflammation in a murine model of allergic asthma. Biochem Biophys Res Commun. 2009;386(1):181–5.

    Article  CAS  PubMed  Google Scholar 

  93. Lee HY, Rhee CK, Kang JY, Byun JH, Choi JY, Kim SJ, et al. Blockade of IL-33/ST2 ameliorates airway inflammation in a murine model of allergic asthma. Exp Lung Res. 2014;40(2):66–76.

    Article  CAS  PubMed  Google Scholar 

  94. Ranjan R, Rani A, Metwally A, McGee HS, Perkins DL. Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem Biophys Res Commun. 2016;469(4):967–77.

    Article  CAS  PubMed  Google Scholar 

  95. Lim YW, Schmieder R, Haynes M, Willner D, Furlan M, Youle M, et al. Metagenomics and metatranscriptomics: windows on CF-associated viral and microbial communities. J Cyst Fibros. 2013;12(2):154–64.

    Article  CAS  PubMed  Google Scholar 

  96. Gevers D, Pop M, Schloss PD, Huttenhower C. Bioinformatics for the human microbiome project. PLoS Comput Biol. 2012;8(11):e1002779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Peabody MA, Van Rossum T, Lo R, Brinkman FS. Evaluation of shotgun metagenomics sequence classification methods using in silico and in vitro simulated communities. BMC Bioinformatics. 2015;16:363.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–1.

    Article  CAS  PubMed  Google Scholar 

  99. Corren J. Asthma phenotypes and endotypes: an evolving paradigm for classification. Discov Med. 2013;15(83):243–9.

    PubMed  Google Scholar 

  100. Sittka A, Vera J, Lai X, Schmeck BT. Asthma phenotyping, therapy, and prevention: what can we learn from systems biology? Pediatr Res. 2013;73(4 Pt 2):543–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Ozturk would like to thank the Turkish Thoracic Society Fellowship Programme for supporting her work at the UIC Department of Medicine Finn-Perkins Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia W. Finn.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Asthma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozturk, A.B., Turturice, B.A., Perkins, D.L. et al. The Potential for Emerging Microbiome-Mediated Therapeutics in Asthma. Curr Allergy Asthma Rep 17, 62 (2017). https://doi.org/10.1007/s11882-017-0730-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-017-0730-1

Keywords

Navigation