Advertisement

Nanotechnologies for In Vitro IgE Testing

  • Iwan MärkiEmail author
  • Fabien Rebeaud
Immunologic/Diagnostic Tests in Allergy (M Chapman and A Pomés, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Immunologic/Diagnostic Tests in Allergy

Abstract

Purpose of Review

This review discusses the recent advances in the development of IgE antibody assays based on nanotechnologies. IgE blood testing is an important part of the diagnostic workup of IgE-mediated hypersentivity. We also address the challenges in moving from an academic proof-of-concept to a product routinely used by allergy experts.

Recent Findings

Several nanotechnologies have been applied to the field of IgE testing: nanoparticles are used either as a support to capture analytes or as a detection tool to enhance the measurement signal. Nanofluidics allows to reduce assay time by enhancing molecular interaction.

Summary

Nanotechnologies bring forth new methods for in vitro IgE testing. Substantial advantages such as lower sample volume, shorter assay time, simplified procedures, and lower analytic sensitivity, without affecting test precision and accuracy, can be achieved thanks to nanotechnologies.

Keywords

IgE blood test Allergy diagnosis Nanotechnology Nanofluidics Nanoparticles 

Notes

Compliance with Ethical Standards

Conflict of Interest

The first author has a patented nanofluidic biosensor and its use for rapid measurement of biomolecular interactions in solution and methods issued; a patented apparatus and method for detecting and measuring biomolecular interactions; and is one of the inventors of the nanofluidic technology described in the text.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Krishnamoorthy S. Nanostructured sensors for biomedical applications—a current perspective. Curr Opin Biotechnol. 2015;34:118–24.CrossRefPubMedGoogle Scholar
  2. 2.
    Krizkova S, Heger Z, Zalewska M, Moulick A, Adam V, Kizek R. Nanotechnologies in protein microarrays. Nanomed. 2015;10(17):2743–55.CrossRefGoogle Scholar
  3. 3.
    Kurkina T, Balasubramanian K. Towards in vitro molecular diagnostics using nanostructures. Cell Mol Life Sci. 2012;69(3):373–88.CrossRefPubMedGoogle Scholar
  4. 4.
    • Kim S, Lee J, Lee SJ, Lee HJ. Ultra-sensitive detection of IgE using biofunctionalized nanoparticle-enhanced SPR. Talanta. 2010;81(4–5):1755–9. A label-free assay for the detection of IgE antibodies in the sub-nanogram per milliliter range using nanoparticles. This interesting study shows how the use of nanoparticles substantially improve assay analytic sensitivity. CrossRefPubMedGoogle Scholar
  5. 5.
    Bellah MM, Christensen SM, Iqbal SM. Nanostructures for medical diagnostics. J Nanomater. 2012;2012:1–21.CrossRefGoogle Scholar
  6. 6.
    Hamilton RG. Proficiency survey-based evaluation of clinical total and allergen-specific IgE assay performance. Arch Pathol Lab Med. 2010;134(7):975–82.PubMedGoogle Scholar
  7. 7.
    Friend JC, Hilligoss DM, Marquesen M, Ulrick J, Estwick T, Turner ML, et al. Skin ulcers and disseminated abscesses are characteristic of Serratia marcescens infection in older patients with chronic granulomatous disease. J Allergy Clin Immunol. 2009;124(1):164–6.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    van Erp FC, Klemans RJB, Meijer Y, van der Ent CK, Knulst AC. Using component-resolved diagnostics in the management of peanut-allergic patients. Curr Treat Options Allergy. 2016;3(2):169–80.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kukkonen AK, Pelkonen AS, Mäkinen-Kiljunen S, Voutilainen H, Mäkelä MJ. Ara h 2 and Ara 6 are the best predictors of severe peanut allergy: a double-blind placebo-controlled study. Allergy. 2015;70(10):1239–45.CrossRefPubMedGoogle Scholar
  10. 10.
    Lupinek C, Wollmann E, Baar A, Banerjee S, Breiteneder H, Broecker BM, et al. Advances in allergen-microarray technology for diagnosis and monitoring of allergy: the MeDALL allergen-chip. Methods. 2014;66(1):106–19.CrossRefPubMedGoogle Scholar
  11. 11.
    van Hage M, Schmid-Grendelmeier P, Skevaki C, Plebani M, Canonica W, Kleine-Tebbe J, et al. Performance evaluation of ImmunoCAP® ISAC 112: a multi-site study. Clin Chem Lab Med CCLM [Internet]. 2017 Jan 1 [cited 2017 Mar 17];55(4). Available from: http://www.degruyter.com/view/j/cclm.2017.55.issue-4/cclm-2016-0586/cclm-2016-0586.xml.
  12. 12.
    • Gadisseur R, Chapelle J-P, Cavalier E. A new tool in the field of in-vitro diagnosis of allergy: preliminary results in the comparison of ImmunoCAP© 250 with the ImmunoCAP© ISAC. Clin Chem Lab Med [Internet]. 2011 Jan 1 [cited 2017 Mar 17];49(2). Available from: http://www.degruyter.com/view/j/cclm.2011.49.issue-2/cclm.2011.052/cclm.2011.052.xml. This is a large-scale method comparison study between a reference method and the first IgE antibody microarray commercially available. It both highlights the potential and challenges associated with such multiplex technology.
  13. 13.
    Matricardi PM, Kleine-Tebbe J, Hoffmann HJ, Valenta R, Hilger C, Hofmaier S, et al. EAACI molecular allergology User’s guide. Pediatr Allergy Immunol. 2016;27(suppl23):1–250.CrossRefPubMedGoogle Scholar
  14. 14.
    • King E-M, Vailes LD, Tsay A, Satinover SM, Chapman MD. Simultaneous detection of total and allergen-specific IgE by using purified allergens in a fluorescent multiplex array. J Allergy Clin Immunol. 2007;120(5):1126–31. This technology uses a combination of a sensitive detection method, microparticles and highly pure allergen components allows to quantify multiple allergen-specific IgE levels from a small sample volume. CrossRefPubMedGoogle Scholar
  15. 15.
    Pomponi D, Bernardi ML, Liso M, Palazzo P, Tuppo L, Rafaiani C, et al. Allergen micro-bead array for IgE detection: a feasibility study using allergenic molecules tested on a flexible multiplex flow cytometric immunoassay. Karagiannis SN, editor. PLoS ONE. 2012;7(4):e35697.Google Scholar
  16. 16.
    Zhou W, Gao X, Liu D, Chen X. Gold nanoparticles for in vitro diagnostics. Chem Rev. 2015;115(19):10575–636.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Teste B, Malloggi F, Siaugue J-M, Varenne A, Kanoufi F, Descroix S. Microchip integrating magnetic nanoparticles for allergy diagnosis. Lab Chip. 2011;11(24):4207.CrossRefPubMedGoogle Scholar
  18. 18.
    Liu Y-F, Tsai J-J, Chin Y-T, Liao E-C, Wu C-C, Wang G-J. Detection of allergies using a silver nanoparticle modified nanostructured biosensor. Sens Actuators B Chem. 2012;171-172:1095–100.CrossRefGoogle Scholar
  19. 19.
    Liu H, Malhotra R, Peczuh MW, Rusling JF. Electrochemical Immunosensors for antibodies to peanut allergen Ara h2 using gold nanoparticle−peptide films. Anal Chem. 2010;82(13):5865–71.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ashraf S, Qadri S, Al-Ramadi B, Haik Y. Nanoparticles rapidly assess specific IgE in plasma. Nanotechnology. 2012;23(30):305101.CrossRefPubMedGoogle Scholar
  21. 21.
    Wang J, Munir A, Li Z, Zhou HS. Aptamer–Au NPs conjugates-enhanced SPR sensing for the ultrasensitive sandwich immunoassay. Biosens Bioelectron. 2009;25(1):124–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Wang J, Munir A, Li Z, Zhou HS. Aptamer-Au NPs conjugates-accumulated methylene blue for the sensitive electrochemical immunoassay of protein. Talanta. 2010;81(1–2):63–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Chinnasamy T, Segerink LI, Nystrand M, Gantelius J, Andersson SH. Point-of-care vertical flow allergen microarray assay: proof of concept. Clin Chem. 2014;60(9):1209–16.CrossRefPubMedGoogle Scholar
  24. 24.
    Platt GW, Damin F, Swann MJ, Metton I, Skorski G, Cretich M, et al. Allergen immobilisation and signal amplification by quantum dots for use in a biosensor assay of IgE in serum. Biosens Bioelectron. 2014;52:82–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Yao J, Schachermeyer S, Yin Y, Zhong W. Cation exchange in ZnSe nanocrystals for signal amplification in bioassays. Anal Chem. 2011;83(1):402–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Soler M, Mesa-Antunez P, Estevez M-C, Ruiz-Sanchez AJ, Otte MA, Sepulveda B, et al. Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis. Biosens Bioelectron. 2015;66:115–23.CrossRefPubMedGoogle Scholar
  27. 27.
    •• Durand NFY, Saveriades E, Renaud P. Detecting proteins complex formation using steady-state diffusion in a nanochannel. Anal Bioanal Chem. 2009;394(2):421–5. This study establishes the basis for the development of nanofluidic biosensors to simply and rapidly detect protein interactions. It proposes a theoretical model that is experimentally validated. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Abionic SA, Biopôle, sect. Esplanade SE-AEpalingesSwitzerland

Personalised recommendations