Chikungunya Infection: a Global Public Health Menace

  • A. J. Mathew
  • A. Ganapati
  • J. Kabeerdoss
  • A. Nair
  • N. Gupta
  • P. Chebbi
  • S. K. Mandal
  • Debashish Danda
Autoimmunity (TK Tarrant, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Autoimmunity

Abstract

Chikungunya virus (CHIKV) has been involved in epidemics in African and Asian subcontinents and, of late, has transcended to affect the Americas. Aedes aegypti and Aedes albopictus are the major vectors for CHIKV infection, which results in dissemination of virus to various vital organs. Entry of virus into these tissues causes infiltration of innate immune cells, monocytes, macrophages, neutrophils, natural killer cells, and adaptive immune cells. Macrophages bearing the replicating virus, in turn, secrete pro-inflammatory cytokines IL-1β, TNF-α, and IL-17. Together, this pro-inflammatory milieu induces osteoclastogenesis, bone loss, and erosion. CHIKV is characterized by fever, headache, myalgia, rash, and symmetric polyarthritis, which is generally self-limiting. In a subset of cases, however, musculoskeletal symptoms may persist for up to 3–5 years. Viral culture and isolation from blood cells of infected patients are the gold standards for diagnosis of CHIKV. In routine practice, however, assays for anti-CHIKV IgM antibodies are used for diagnosis, as elevated levels in blood of infected patients are noted from 10 days following infection for up to 3–6 months. Early diagnosis of CHIKV is possible by nucleic acid detection techniques. Treatment of acute CHIKV is mainly symptomatic, with analgesics, non-steroidal anti-inflammatory agents (NSAIDs), and low-dose steroids. No vaccines or anti-viral medicines have been approved for clinical therapy in CHIKV as yet. Hydroxychloroquine and methotrexate have been used in chronic CHIKV infection with variable success.

Keywords

Chikungunya virus Inflammatory arthritis Disease modifying anti-rheumatic drugs 

Notes

Compliance with Ethical Standards

Conflict of Interest

Drs. Mathew, Ganapati, Jayakanthan, Nair, Gupta, Chebbi, Mandal, and Danda declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Robinson MC. An epidemic of virus disease in Southern Province, Tanganyika Territory in 1952–53—1: clinical features. Trans R Soc Trop Med Hyg. 1955;49:28.CrossRefPubMedGoogle Scholar
  2. 2.
    Thiberville SD, Moyen N, Dupuis-Maguiraga L, et al. Chikungunya fever: epidemiology, clinical syndrome, pathogenesis and therapy. Antivir Res. 2013;99:345–70.CrossRefPubMedGoogle Scholar
  3. 3.
    • Pineda C, Munoz-Louis R, Caballero-Uribe CV, Viasus D. Chikungunya in the region of the Americas. A challenge for rheumatologists and health care systems. Clin Rheumatol. 2016;35:2381–5. A comprehensive review on the clinical features of CHIKV in the American continent, and also emphasizing on the challenges to the healthcare system following the epidemic.CrossRefPubMedGoogle Scholar
  4. 4.
    Centers for Disease Control and Prevention: Chikungunya virus http://www.cdc.gov/chikungunya/geo/united-states.html (Accessed Oct 12, 2016)
  5. 5.
    •• Schilte C, Staikowsky F, Couderc T, et al. Chikungunya virus-associated long-term arthralgia: a 36 month prospective longitudinal study. PLoS Negl Trop Dis. 2013;7, e2137. doi: 10.1371/journal.pntd.0002137. A 3-year post-infection study of patients affected by CHIKV during the 2006 La Reunion island epidemic in France, describing 60% of the patients complaining of arthralgia during the follow up period, emphasizing the relatively high frequency of chronic complications following acute infection.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mathew AJ, Goyal V, George E, Thekkemuriyil DV, Jayakumar B, Chopra A. Rheumatic-musculoskeletal pain and disorders in a naïve group of individuals 15 months following a Chikungunya viral epidemic in south India: a population based observational study. Int J Clin Pract. 2011;65:1306–12.CrossRefPubMedGoogle Scholar
  7. 7.
    Rodriguez-Morales AJ, Cardona-Ospina JA, Urbano-Garzon SF, Hurtado-Zapata JS. Prevalence of post-chikungunya infection chronic inflammatory arthritis: a systemic review and meta-analysis. Arthritis Care Res. 2016;68:1849–58.CrossRefGoogle Scholar
  8. 8.
    Cavrini F, Gaibani P, Pierro AM, Rossini G, Landini MP, Sambri V. Chikungunya: an emerging and spreading arthropod-borne viral disease. J Infect Dev Ctries. 2009;3:744–52.PubMedGoogle Scholar
  9. 9.
    Vega-Rúa A, Zouache K, Girod R, Failloux A-B, Lourenço-de-Oliveira R. High level of vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of chikungunya virus. J Virol. 2014;88:6294–306.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    • Ng LC, Hapuarachchi HC. Tracing the path of Chikungunya virus-evolution and adaptation. Infect Genet Evol. 2010;10:876–85. In this explicit review, the authors explain the biologically important E1-A226V and E2-I211T mutations undergone by CHIK virus, which resulted in the change in epidemiology of infection as a result of rapid adaptation to the Aedes albopictus vector. The role of environmental factors and preemptive methods for combating the disease are emphasized.Google Scholar
  11. 11.
    Lahariya C, Pradhan SK. Emergence of chikungunya virus in Indian subcontinent after 32 years: a review. J Vector Borne Dis. 2006;43:151–60.PubMedGoogle Scholar
  12. 12.
    Savini H, Gautret P, Gaudart J, et al. Travel-associated diseases, Indian Ocean Islands, 1997–2010. Emerg Infect Dis. 2013;19:1297–301.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rezza G, Nicoletti L, Angelini R, et al. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet Lond Engl. 2007;370:1840–6.CrossRefGoogle Scholar
  14. 14.
    Gould EA, Gallian P, De Lamballerie X, Charrel RN. First cases of autochthonous dengue fever and chikungunya fever in France: from bad dream to reality! Clin Microbiol Infect. 2010;16:1702–4.CrossRefPubMedGoogle Scholar
  15. 15.
    Horcada ML, Díaz-Calderón C, Garrido L. Chikungunya fever. Rheumatic manifestations of an emerging disease in Europe. Reumatol Clin. 2015;11:161–4.CrossRefPubMedGoogle Scholar
  16. 16.
    Tsetsarkin KA, Chen R, Sherman MB, Weaver SC. Chikungunya virus: evolution and genetic determinants of emergence. Curr Opin Virol. 2011;1:310–7.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Reiter P, Fontenille D, Paupy C. Aedes albopictus as an epidemic vector of chikungunya virus: another emerging problem? Lancet Infect Dis. 2006;6:463–4.CrossRefPubMedGoogle Scholar
  18. 18.
    Powers AM, Logue CH. Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus. J Gen Virol. 2007;88:2363–77.CrossRefPubMedGoogle Scholar
  19. 19.
    Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 2007;3, e201.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yadav P, Gokhale MD, Barde PV, Singh DK, Mishra AC, Mourya DT. Experimental transmission of Chikungunya virus by Anopheles stephensi mosquitoes. Acta Virol. 2003;47:45–7.PubMedGoogle Scholar
  21. 21.
    Lo Presti A, Lai A, Cella E, Zehender G, Ciccozzi M. Chikungunya virus, epidemiology, clinics and phylogenesis: a review. Asian Pac J Trop Med. 2014;7:925–32.CrossRefPubMedGoogle Scholar
  22. 22.
    Diallo M, Thonnon J, Traore-Lamizana M, Fontenille D. Vectors of Chikungunya virus in Senegal: current data and transmission cycles. Am J Trop Med Hyg. 1999;60:281–6.PubMedGoogle Scholar
  23. 23.
    Parola P, de Lamballerie X, Jourdan J, et al. Novel chikungunya virus variant in travelers returning from Indian Ocean islands. Emerg Infect Dis. 2006;12:1493–9.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Simmons G, Brès V, Lu K, et al. High incidence of chikungunya virus and frequency of viremic blood donations during epidemic, Puerto Rico, USA, 2014. Emerg Infect Dis. 2016;22:1221–8.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Couderc T, Gangneux N, Chrétien F, et al. Chikungunya virus infection of corneal grafts. J Infect Dis. 2012;206:851–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Gérardin P, Barau G, Michault A, et al. Multidisciplinary prospective study of mother-to-child chikungunya virus infections on the island of La Réunion. PLoS Med. 2008;5, e60.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Teo TH, Lum FM, Lee WW, Ng LF. Mouse models for Chikungunya virus: deciphering immune mechanisms responsible for disease and pathology. Immunol Res. 2012;53:136–47.CrossRefPubMedGoogle Scholar
  28. 28.
    Labadie K, Larcher T, Joubert C, et al. Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages. J Clin Invest. 2010;120:894–906.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gardner J, Anraku I, Le TT, et al. Chikungunya virus arthritis in adult wild-type mice. J Virol. 2010;84:8021–32.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Morrison TE, Oko L, Montogomery SA, et al. A mouse model of Chikungunya virus-induced musculoskeletal inflammatory disease: evidence of arthritis, tenosynovitis, myositis and persistence. Am J Pathol. 2011;178:32–40.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    • Couderc T, Chretien F, Schilte C, et al. A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease. PLoS Pathog. 2008;4, e29. One of the initial bench side animal model research in CHIK virus, highlighting the role of type-I interferon signaling in severe disease.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Goupil BA, McNulty MA, Martin MJ, McCracken MK, Christofferson RC, Mores CN. Novel lessons of bones and joints associated with Chikungunya virus infection in two mouse models of disease: new insights into disease pathogenesis. PLoS One. 2016;16, e0155243.CrossRefGoogle Scholar
  33. 33.
    Schilte C, Couderc T, Chretien F, et al. Type I IFN controls chikungunya virus via its action on nonhematopoietic cells. J Exp Med. 2010;207:429–42.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    • Rulli NE, Rolph MS, Srikiatkhachorn A, Anantapreecha S, Guglielmotti A, Mahalingam S. Protection from arthritis and myositis in a mouse model of acute chikungunya virus disease by bindarit, an inhibitor of monocyte chemotactic protein-1 synthesis. J Infect Dis. 2011;204:1026–30. In this study, the authors have demonstrated the presence of cytokines in a mouse model of CHIKV arthritis and myositis. The role of chemokine MCP-1 and its inhibitor bindarit ameliorating the disease in mice is also studied. This has a potential for a future drug target.CrossRefPubMedGoogle Scholar
  35. 35.
    Venugopalan A, Ghorpade RP, Chopra A. Cytokines in acute Chikungunya. PLoS One. 2014;24, e111305.CrossRefGoogle Scholar
  36. 36.
    Teo TH, Her Z, Tan JJ, et al. Caribbean and La Reunion Chikungunya virus isolates differ in their capacity to induce proinflammatory Th1 and NK cell responses and acute joint pathology. J Virol. 2015;89:7955–69.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Teo TH, Lum FM, Claser C, et al. A pathogenic role of CD4+ T cells during Chikungunya virus infection in mice. J Immunol. 2013;190:259–69.CrossRefPubMedGoogle Scholar
  38. 38.
    Lum FM, Teo TH, Lee WW, Kam YW, Renia L, Ng LF. An essential role of antibodies in the control of Chikungunya virus infection. J Immunol. 2013;190:6295–302.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kam YW, Lee WW, Simarmata D, et al. Longitudinal analysis of the human antibody response to Chikungunya virus infection: implications for serodiagnosis and vaccine development. J Virol. 2012;86:13005–15.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    •• Hoarau JJ, Jaffar Bandjee MC, Krejbich Trotot P, et al. Persistent chronic inflammation and infection by Chikungunya arthritogenic alphavirus in spite of a robust host immune response. J Immunol. 2010;184:5914–27. A well-designed study analyzing the factors responsible for chronic complications in the La Reunion island epidemic in 2006. In a prospective cohort of 49 patients, categorized into two distinct groups—recovered or chronic, 12 months post-infection, the authors describe contrasting cellular and molecular events, focusing on drug targets.CrossRefPubMedGoogle Scholar
  41. 41.
    Petitdemange C, Wauquier N, Devilliers H, et al. Longitudinal analysis of natural killer cells in dengue virus-infected patients in comparison to chikungunya and chikungunya/dengue virus-infected patients. PLoS Negl Trop Dis. 2016;10, e0004499.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Noret M, Herrero L, Rulli N, et al. Interleukin 6, RANKL, and osteoprotegerin expression by chikungunya virus-infected human osteoblasts. J Infect Dis. 2012;206:455–7.CrossRefPubMedGoogle Scholar
  43. 43.
    • Chen W, Foo SS, Rulli NE, et al. Arthritogenic alphaviral infection pertubs osteoblast function and triggers pathologic bone loss. Proc Natl Acad Sci U S A. 2014;111:6040–5. A study describing the pathogenesis of bone loss caused by alphaviruses. In Ross River virus-infected human osteoblasts, the authors demonstrated higher levels of inflammatory cytokines and disrupted ratio of RANK/OPG.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ryman KD, Klimstra WB. Closing the gap between viral and noninfectious arthritis. Proc Natl Acad Sci U S A. 2014;111:5767–8.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Simon F, Savini H, Parola P. Chikungunya: a paradigm of emergence and globalization of vector-borne diseases. Med Clin North Am. 2008;92:1323–43.CrossRefPubMedGoogle Scholar
  46. 46.
    Pialoux G, Gaüzère B-A, Jauréguiberry S, Strobel M. Chikungunya, an epidemic arbovirosis. Lancet Infect Dis. 2007;7:319–27.CrossRefPubMedGoogle Scholar
  47. 47.
    Parola P, de Lamballerie X, Jourdan J, Rovery C, Vaillant V, Minodier P, et al. Novel Chikungunya virus variant in travelers returning from Indian Ocean islands. Emerg Infect Dis. 2006;12:1493–9.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Taubitz W, Cramer JP, Kapaun A, Pfeffer M, Drosten C, Dobler G, et al. Chikungunya fever in travelers: clinical presentation and course. Clin Infect Dis. 2007;45:e1–4.CrossRefPubMedGoogle Scholar
  49. 49.
    • Borgherini G, Poubeau P, Staikowsky F, Lory M, Le Moullec N, Becquart JP, et al. Outbreak of chikungunya on Reunion Island: early clinical and laboratory features in 157 adult patients. Clin Infect Dis. 2007;44:1401–7. In one of the early analyses of the 2005–06 La Reunion island epidemics in France, the authors describe the demography, clinical features, and laboratory parameters of 157 affected patients.CrossRefPubMedGoogle Scholar
  50. 50.
    Mahendradas P, Avadhani K, Shetty R. Chikungunya and the eye: a review. J Ophthalmic Inflamm Infect. 2013;3:35.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    • Torres JR, Falleiros-Arlant LH, Duenas L, Pleitez-Nevarrete J, Salgado DM, Castillo JB. Congenintal and perinatal complications of chikungunya fever: a Latin American experience. Int J Infect Dis. 2016;51:85–8. A prospective study of 169 symptomatic newborns in Latin America during the 2014–2015 CHIKV epidemic. Clinical features, complications, and vertical transmission rates are described. The authors have also analyzed pregnancy outcomes in symptomatic infected mothers.CrossRefPubMedGoogle Scholar
  52. 52.
    Win MK, Chow A, Dimatatac F, Go CJ, Leo YS. Chikungunya fever in Singapore: acute clinical and laboratory features, and factors associated with persistent arthralgia. J Clin Virol. 2010;49:111–4.CrossRefPubMedGoogle Scholar
  53. 53.
    Gérardin P, Fianu A, Michault A, et al. Predictors of Chikungunya rheumatism: a prognostic survey ancillary to the TELECHIK cohort study. Arthritis Res Ther. 2013;15:R9.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ribéra A, Degasne I, Jaffar Bandjee MC, Gasque P. Chronic rheumatic manifestations following chikungunya virus infection: clinical description and therapeutic considerations. Med Trop. 2012;72:83–5.Google Scholar
  55. 55.
    Bouquillard E, Combe B. A report of 21 cases of rheumatoid arthritis following chikungunya fever. A mean follow-up of two years. Joint Bone Spine. 2009;76:654–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Mathew AJ, Chopra A, Antony J, Anandan N, Nair GS. Increased incidence of soft tissue rheumatism following Chikungunya viral epidemic: incidental or cause? Ann Rheum Dis. 2011;70(Suppl3):567.Google Scholar
  57. 57.
    Nelson P, Rylance P, Roden D, Trela M, Tugnet N. Viruses as potential pathogenic agents in systemic lupus erythematosus. Lupus. 2014;23:596–605.CrossRefPubMedGoogle Scholar
  58. 58.
    Vaughan JH. Viruses and autoimmune disease. J Rheumatol. 1996;23:1831–3.PubMedGoogle Scholar
  59. 59.
    Manimunda SP, Vijayachari P, Uppoor R, et al. Clinical progression of chikungunya fever during acute and chronic arthritic stages and the changes in joint morphology as revealed by imaging. Trans R Soc Trop Med Hyg. 2010;104:392–99.CrossRefPubMedGoogle Scholar
  60. 60.
    Essackjee K, Goorah S, Ramchurn SK, Cheeneebash J, Walker-Bone K. Prevalence of and risk factors for chronic arthralgia and rheumatoid-like polyarthritis more than 2 years after infection with chikungunya virus. Postgrad Med J. 2013;89:440–7.CrossRefPubMedGoogle Scholar
  61. 61.
    Chopra A, Anuradha V, Lagoo-Joshi V, Kunjir V, Salvi S, Saluja M. Chikungunya virus aches and pains: an emerging challenge. Arthritis Rheum. 2008;58:2921–2.CrossRefPubMedGoogle Scholar
  62. 62.
    Prince HE, Seaton BL, Matud JL, Batterman HJ. Chikungunya virus RNA and antibody testing at a national reference laboratory since the emergence of Chikungunya virus in the Americas. Clin Vaccine Immunol. 2015;22:291–7.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Patel P, Abd El Wahed A, Faye O, et al. A field-deployable reverse transcription recombinase polymerase amplification assay for rapid detection of the Chikungunya virus. PLoS Negl Trop Dis. 2016;10:e0004953.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Parida MM, Santhosh SR, Dash PK, et al. Rapid and real-time detection of Chikungunya virus by reverse transcription loop-mediated isothermal amplification assay. J Clin Microbiol. 2007;45:351–7.CrossRefPubMedGoogle Scholar
  65. 65.
    Ng LFP, Chow A, Sun J, Dwek DJC, et al. IL-1β, IL-6 and RANTES as biomarkers of Chikungunya severity. PLoS One. 2009;4, e4261.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Chirathworn C, Poovorawan Y, Lertmaharit S, Wuttirattanakowit N. Cytokine levels in patients with Chikungunya virus infection. Asian Pac J Trop Med. 2013;6:631–4.CrossRefGoogle Scholar
  67. 67.
    Brighton SW. Chloroquine phosphate treatment of chronic Chikungunya arthritis. An open pilot study. South Afr Med J. 1984;66:217–8.Google Scholar
  68. 68.
    Chopra A, Saluja M, Venugopalan A. Effectiveness of chloroquine and inflammatory cytokine response in patients with early persistent musculoskeletal pain and arthritis following chikungunya virus infection. Arthritis Rheumatol. 2014;66:319–26.CrossRefPubMedGoogle Scholar
  69. 69.
    • Ravindran V, Alias G. Efficacy of combination DMARD therapy vs hydroxychloroquine monotherapy in chronic persistent chikungunya arthritis: a 24-week randomized controlled open label study. Clin Rheumatol 2016. A randomized control trial of combination DMARDs vs HCQ monotherapy in 72 patients with chronic CHIKV rheumatism, showing better efficacy with combination therapy Google Scholar
  70. 70.
    Ganu MA, Ganu AS. Post-chikungunya chronic arthritis—our experience with DMARDs over two year follow up. J Assoc Physicians India. 2011;59:83–6.PubMedGoogle Scholar
  71. 71.
    Ravichandran R, Manian M. Ribavirin therapy for Chikungunya arthritis. J Infect Dev Ctries. 2008;2:140–2.CrossRefPubMedGoogle Scholar
  72. 72.
    Gunn BM, Morrison TE, Whitmore AC, et al. Mannose binding lectin is required for alphavirus-induced arthritis/myositis. PLoS Pathog. 2012;8, e1002586.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Shoji-Kawata S, Sumpter R, Leveno M, Campbell GR, Zou Z, Kinch L, et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature. 2013;494:201–6.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    • Simon F, Javelle E, Cabie A, et al. French guidelines for management of chikungunya (acute and persistent presentations), November 2014. Med Mal Infect. 2015;45:243–63. First published guidelines for diagnosis, assessment, and management of acute, post-acute, and chronic CHIKV.CrossRefPubMedGoogle Scholar
  75. 75.
    Wang YM, Lu JW, Lin CC, et al. Antiviral activities of niclosamide and nitazoxanide against chikungunya virus entry and transmission. Antiviral Res 2016. doi:  10.1016/j.antiviral.2016.10.003
  76. 76.
    Ho YJ, Wang YM, Lu JW, et al. Suramin inhibits Chikungunya virus entry and transmission. PLoS One. 2015;10, e0133511. doi: 10.1371/journal.pone.0133511.CrossRefPubMedGoogle Scholar
  77. 77.
    Henβ L, Beck S, Weidner T, et al. Suramin is a potent inhibitor of Chikungunya and Ebola virus cell entry. Virol J. 2016;13:149.CrossRefGoogle Scholar
  78. 78.
    Kuo SC, Wang YM, Ho YJ, et al. Suramin treatment reduces chikungunya pathogenesis in mice. Antiviral Res. 2016;134:89–96.CrossRefPubMedGoogle Scholar
  79. 79.
    Dagley A, Ennis J, Turner JD, et al. Protection against Chikungunya virus induced arthralgia following prophylactic treatment with adenovirus vectored interferon (mDEF201). Antiviral Res. 2014;108:1–9.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Prevention | Chikungunya virus | CDC [Internet]. [cited 2016 Jun 23]. Available from: http://www.cdc.gov/chikungunya/prevention/
  81. 81.
    Protection against Mosquitoes, Ticks, & Other Arthropods - Chapter 2–2016 Yellow Book | Travelers’ Health | CDC [Internet]. [cited 2016 Jun 23]. Available from: http://wwwnc.cdc.gov/travel/yellowbook/2016/the-pre-travel-consultation/protection-against-mosquitoes-ticks-other-arthropods
  82. 82.
    WHO | Control strategies [Internet]. WHO. [cited 2016 Jun 23]. Available from: http://www.who.int/denguecontrol/control_strategies/en/
  83. 83.
    Centers for Disease Control and Prevention (U.S.), National Center for Emerging and Zoonotic Infectious Diseases (U.S.), Pan American Health Organization. Preparedness and response for Chikungunya virus introduction in the Americas [Internet]. Washington, DC: Pan American Health Organization : CDC, Center for Disease Control and Prevention; 2011 [cited 2016 Jun 26]. Available from: http://new.paho.org/hq/index.php?option=com_docman&task=doc_download&gid=16984&Itemid
  84. 84.
    McSweegan E, Weaver SC, Lecuit M, Frieman M, Morrison TE, Hrynkow S. The global virus network: challenging chikungunya. Antiviral Res. 2015;120:147–52.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • A. J. Mathew
    • 1
  • A. Ganapati
    • 1
  • J. Kabeerdoss
    • 1
  • A. Nair
    • 1
  • N. Gupta
    • 1
  • P. Chebbi
    • 1
  • S. K. Mandal
    • 1
  • Debashish Danda
    • 1
  1. 1.Department of Clinical Immunology and RheumatologyChristian Medical CollegeVelloreIndia

Personalised recommendations