Advertisement

Nasal Mucociliary Clearance in Adenoid Hypertrophy and Otitis Media with Effusion

  • Hasmet YazıcıEmail author
Otitis (DP Skoner, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Otitis

Abstract

Mucociliary clearance (MCC), which exists in many systems, is the first defensive mechanism of the human body. Nasal MCC has an important role in transporting the secretions of the nasal cavity and paranasal sinuses along with the trapped inhaled pathogens to the nasopharynx. Physiologic or pathologic situations that effect nasal MCC, such as temperature, humidity, nasal obstruction, allergic rhinitis, chronic infections, etc., lead to impaired MCC and related local or circumjacent system disorders. With this perspective, when a unified airway with a multiple disease principle is considered, investigating the relationship between adenoid hypertrophy (AH), otitis media with effusion (OME) and nasal MCC is logical. In this review, histological and physiologic properties of nasal MCC and its possible role involving pathologic situations such as AH and OME is discussed together with recent literature findings.

Keywords

Mucociliary clearance MCC Adenoid hypertrophy Otitis media with effusion 

Notes

Compliance with Ethical Standards

Conflict of Interest

Dr. Yazıcı declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors. With regard to the authors’ research cited in this paper, all procedures were followed in accordance with the ethical standards of the responsible committee on human experimentation and with the Helsinki Declaration of 1975, as revised in 2000 and 2008.

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Chang EH. New insights into the pathogenesis of cystic fibrosis sinusitis. Int For Allerg Rhinol. 2014;4(2):132–7. doi: 10.1002/alr.21252.CrossRefGoogle Scholar
  2. 2.
    Demarco RC, Tamashiro E, Rossato M, Ferreira MD, Valera FC, Anselmo-Lima WT. Ciliary ultrastructure in patients with chronic rhinosinusitis and primary ciliary dyskinesia. Eur Arch Otorhinolaryngol. 2013;270(7):2065–70. doi: 10.1007/s00405-012-2342-7.CrossRefPubMedGoogle Scholar
  3. 3.
    Gudis D, Zhao KQ, Cohen NA. Acquired cilia dysfunction in chronic rhinosinusitis. Am J Rhinol Allergy. 2012;26(1):1–6. doi: 10.2500/ajra.2012.26.3716.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Andreoli SM, Schlosser RJ, Wang LF, Mulligan RM, Discolo CM, White DR. Adenoid ciliostimulation in children with chronic otitis media. Otolaryngology–Head and Neck. Surgery. 2013;148(1):135–9. doi: 10.1177/0194599812462664.Google Scholar
  5. 5.••
    Yazici H, Soy FK, Kulduk E, Dogan S, Dundar R, Sakarya EU, et al. Comparison of nasal mucociliary clearance in adenoid hypertrophy with or without otitis media with effusion. Int J Pediatric Otorhinolaryngol. 2014;78(7):1143–6. doi: 10.1016/j.ijporl.2014.04.037. Study shows the importance of the presence of OME on nasal MCC impairment pre and postoperatively at first. CrossRefGoogle Scholar
  6. 6.
    Collins MP, Church MK, Bakhshi KN, Osborne J. Adenoid histamine and its possible relationship to secretory otitis media. J Laryngol Otol. 1985;99(7):685–91.CrossRefPubMedGoogle Scholar
  7. 7.
    Maurizi M, Ottaviani F, Paludetti G, Almadori G, Zappone C. Adenoid hypertrophy and nasal mucociliary clearance in children. A morphological and functional study. Int J Pediatr Otorhinolaryngol. 1984;8(1):31–41.CrossRefPubMedGoogle Scholar
  8. 8.
    Arnaoutakis D, Collins WO. Correlation of mucociliary clearance and symptomatology before and after adenoidectomy in children. Int J Pediatr Otorhinolaryngol. 2011;75(10):1318–21. doi: 10.1016/j.ijporl.2011.07.024.CrossRefPubMedGoogle Scholar
  9. 9.
    Marple BF. Allergic rhinitis and inflammatory airway disease: interactions within the unified airspace. Am J Rhinol Allergy. 2010;24(4):249–54. doi: 10.2500/ajra.2010.24.3499.CrossRefPubMedGoogle Scholar
  10. 10.
    Nguyen LH, Manoukian JJ, Sobol SE, Tewfik TL, Mazer BD, Schloss MD, et al. Similar allergic inflammation in the middle ear and the upper airway: evidence linking otitis media with effusion to the united airways concept. J Allergy Clin Immunol. 2004;114(5):1110–5. doi: 10.1016/j.jaci.2004.07.061.CrossRefPubMedGoogle Scholar
  11. 11.
    Li Y, Liu H, Li J, Zhang Q, Gong S, He D. Morphology and ciliary motion of mucosa in the Eustachian tube of neonatal and adult gerbils. PLoS One. 2014;9(6):e99840. doi: 10.1371/journal.pone.0099840.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Cilia SW. Cyclopaedia of anatomy and physiology. London: Marchant; 1836. p. 28–9.Google Scholar
  13. 13.
    de Oliveira-Maul JP, de Carvalho HB, Miyuki Goto D, Mendonca Maia R, Flo C, Barnabe V, et al. Aging, diabetes, and hypertension are associated with decreased nasal mucociliary clearance. Chest. 2013;143(4):1091–7. doi: 10.1378/chest.12-1183.CrossRefPubMedGoogle Scholar
  14. 14.
    Soylu Ozler G, Akbay E, Akkoca AN, Karapinar OS, Simsek GO. Does menopause effect nasal mucociliary clearance time? Eur Arch Otorhinolaryngol. 2015;272(2):363–6. doi: 10.1007/s00405-014-3118-z.CrossRefPubMedGoogle Scholar
  15. 15.
    Horasanli E, Acar A, Muslu B, Cayonu M, Cimencan M, Kayabasi S. Assessment of nasal mucociliary clearance in anesthetists. Turk J Med Sci. 2015;45(1):197–201.CrossRefPubMedGoogle Scholar
  16. 16.
    Aydogan F, Aydin E, Koca G, Ozgur E, Atilla P, Tuzuner A, et al. The effects of 2100-MHz radiofrequency radiation on nasal mucosa and mucociliary clearance in rats. Int For Allergy Rhinol. 2015;5(7):626–32. doi: 10.1002/alr.21509.CrossRefGoogle Scholar
  17. 17.
    Ulusoy B, Arbag H, Sari O, Yondemli F. Evaluation of the effects of nasal septal deviation and its surgery on nasal mucociliary clearance in both nasal cavities. Am J Rhinol. 2007;21(2):180–3.CrossRefPubMedGoogle Scholar
  18. 18.
    Passali D, Passali GC, Lauriello M, Romano A, Bellussi L, Passali FM. Nasal allergy and otitis media: a real correlation? Sultan Qaboos Univ Med J. 2014;14(1):e59–64.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Shaari J, Palmer JN, Chiu AG, Judy KD, Cohen AS, Kennedy DW, et al. Regional analysis of sinonasal ciliary beat frequency. Am J Rhinol. 2006;20(2):150–4.PubMedGoogle Scholar
  20. 20.
    Gizurarson S. The effect of cilia and the mucociliary clearance on successful drug delivery. Biol Pharmaceut Bull. 2015;38(4):497–506. doi: 10.1248/bpb.b14-00398.CrossRefGoogle Scholar
  21. 21.
    Sahin-Yilmaz A, Naclerio RM. Anatomy and physiology of the upper airway. Proc Am Thorac Soc. 2011;8(1):31–9. doi: 10.1513/pats.201007-050RN.CrossRefPubMedGoogle Scholar
  22. 22.
    Shen JC, Cope E, Chen B, Leid JG, Cohen NA. Regulation of murine sinonasal cilia function by microbial secreted factors. Int For Allergy Rhinol. 2012;2(2):104–10. doi: 10.1002/alr.21002.CrossRefGoogle Scholar
  23. 23.
    Stammberger H. Functional endoscopic sinus surgery. Philadelphia: B.C. Decker; 1991. p. 32–3.Google Scholar
  24. 24.
    Cohen NA. Sinonasal mucociliary clearance in health and disease. Annal Otol Rhinol Laryngol Supp. 2006;196:20–6.Google Scholar
  25. 25.
    Gonzalez C, Espinosa M, Sanchez MT, Droguett K, Rios M, Fonseca X, et al. Epithelial cell culture from human adenoids: a functional study model for ciliated and secretory cells. BioMed Res Int. 2013;2013:478713. doi: 10.1155/2013/478713.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Fahy JV, Dickey BF. Airway mucus function and dysfunction. N Engl J Med. 2010;363(23):2233–47. doi: 10.1056/NEJMra0910061.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Antunes MB, Gudis DA, Cohen NA. Epithelium, cilia, and mucus: their importance in chronic rhinosinusitis. Immunol Allergy Clin N Am. 2009;29(4):631–43. doi: 10.1016/j.iac.2009.07.004.CrossRefGoogle Scholar
  28. 28.
    Knowles MR, Boucher RC. Mucus clearance as a primary innate defense mechanism for mammalian airways. J Clin Invest. 2002;109(5):571–7. doi: 10.1172/JCI15217.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Button B, Cai LH, Ehre C, Kesimer M, Hill DB, Sheehan JK, et al. A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science. 2012;337(6097):937–41. doi: 10.1126/science.1223012.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Imberty A, Varrot A. Microbial recognition of human cell surface glycoconjugates. Curr Opin Struct Biol. 2008;18(5):567–76. doi: 10.1016/j.sbi.2008.08.001.CrossRefPubMedGoogle Scholar
  31. 31.
    Ali MS, Wilson JA, Bennett M, Pearson JP. Mucin gene expression in hypertrophic adenoids. Acta Otolaryngol. 2007;127(10):1080–5. doi: 10.1080/00016480701200236.CrossRefPubMedGoogle Scholar
  32. 32.
    Elsheikh MN, Mahfouz ME. Up-regulation of MUC5AC and MUC5B mucin genes in nasopharyngeal respiratory mucosa and selective up-regulation of MUC5B in middle ear in pediatric otitis media with effusion. Laryngoscope. 2006;116(3):365–9. doi: 10.1097/01.MLG.0000195290.71090.A1.CrossRefPubMedGoogle Scholar
  33. 33.
    Kerschner JE, Hong W, Khampang P, Johnston N. Differential response of gel-forming mucins to pathogenic middle ear bacteria. Int J Pediatr Otorhinolaryngol. 2014;78(8):1368–73. doi: 10.1016/j.ijporl.2014.05.037.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Preciado D, Burgett K, Ghimbovschi S, Rose M. NTHi induction of Cxcl2 and middle ear mucosal metaplasia in mice. Laryngoscope. 2013;123(11):E66–71. doi: 10.1002/lary.24097.CrossRefPubMedGoogle Scholar
  35. 35.••
    Liu LB, Shastry S, Byan-Parker S, Houser G, Chu KK, Birket SE, et al. An autoregulatory mechanism governing mucociliary transport is sensitive to mucus load. Am J Resp Cell Mol. 2014;51(4):485–93. doi: 10.1165/rcmb.2013-0499MA. Providing the first integrated view of the functional microanatomy of the epithelial surfacethe with micro-optical coherence tomography (mOCT). CrossRefGoogle Scholar
  36. 36.
    Button B, Okada SF, Frederick CB, Thelin WR, Boucher RC. Mechanosensitive ATP release maintains proper mucus hydration of airways. Sci Signal. 2013;6(279):ra46. doi: 10.1126/scisignal.2003755.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Munkholm M, Mortensen J. Mucociliary clearance: pathophysiological aspects. Clin Physiol Funct Imaging. 2014;34(3):171–7. doi: 10.1111/cpf.12085.CrossRefPubMedGoogle Scholar
  38. 38.
    Livraghi A, Randell SH. Cystic fibrosis and other respiratory diseases of impaired mucus clearance. Toxicol Pathol. 2007;35(1):116–29. doi: 10.1080/01926230601060025.CrossRefPubMedGoogle Scholar
  39. 39.
    Braverman I, Wright ED, Wang CG, Eidelman D, Frenkiel S. Human nasal ciliary-beat frequency in normal and chronic sinusitis subjects. J Otolaryngol. 1998;27(3):145–52.PubMedGoogle Scholar
  40. 40.
    Quaranta N, Milella C, Iannuzzi L, Gelardi M. A study of the role of different forms of chronic rhinitis in the development of otitis media with effusion in children affected by adenoid hypertrophy. Int J Pediatr Otorhinolaryngol. 2013;77(12):1980–3. doi: 10.1016/j.ijporl.2013.09.017.CrossRefPubMedGoogle Scholar
  41. 41.
    Maurizi M, Paludetti G, Ottaviani F, Almadori G, Falcetti S. Mucociliary function and nasal resistance evaluation before and after adenoidectomy. Int J Pediatr Otorhinolaryngol. 1986;11(3):295–300.CrossRefPubMedGoogle Scholar
  42. 42.
    Ranga RK, Singh J, Gera A, Yadav J. Nasal mucociliary clearance in adenotonsillar hypertrophy. Indian J Pediatr. 2000;67(9):651–2.CrossRefPubMedGoogle Scholar
  43. 43.
    Ozkiris M, Karacavus S, Kapusuz Z, Saydam L. Comparison of two different adenoidectomy techniques with special emphasize on postoperative nasal mucociliary clearance rates: coblation technique vs. cold curettage. Int J Pediatr Otorhinolaryngol. 2013;77(3):389–93. doi: 10.1016/j.ijporl.2012.11.033.CrossRefPubMedGoogle Scholar
  44. 44.
    Kawabata I, Paparella MM. Ultrastructure of normal human middle ear mucosa. Preliminary report. Annal Otol Rhinol Laryngol. 1969;78(1):125–37.CrossRefGoogle Scholar
  45. 45.
    Sade J. Ciliary activity and middle ear clearance. Arch Otolaryngol. 1967;86(2):128–35.CrossRefPubMedGoogle Scholar
  46. 46.
    Ohashi Y, Nakai Y, Kihara S, Maruoka K, Ikeoka H, Uemura Y. The ciliary activity of the middle ear lining--functional and morphological observation. Auris Nasus Larynx. 1985;12 Suppl 1:S123–5.CrossRefPubMedGoogle Scholar
  47. 47.
    Sando I, Takahashi H, Matsune S, Aoki H. Localization of function in the eustachian tube: a hypothesis. Annal Otol Rhinol Laryngol. 1994;103(4 Pt 1):311–4.Google Scholar
  48. 48.
    Orita Y, Sando I, Hirsch BE, Miura M, Hasebe S, Balaban CD. Postnatal development of the eustachian tube glands. Laryngoscope. 2002;112(9):1647–52. doi: 10.1097/00005537-200209000-00022.CrossRefPubMedGoogle Scholar
  49. 49.
    Karja J, Nuutinen J, Karjalainen P. Mucociliary function in children with secretory otitis media. Acta Otolaryngol. 1983;95(5–6):544–6.CrossRefPubMedGoogle Scholar
  50. 50.
    Cingi C, Altin F, Cakli H, Entok E, Gurbuz K, Cingi E. Scintigraphic evaluation of nasal mucociliary activity in unilateral chronic otitis media. J Laryngol Otol. 2005;119(6):443–7. doi: 10.1258/0022215054273098.CrossRefPubMedGoogle Scholar
  51. 51.
    Gurr A, Stark T, Pearson M, Borkowski G, Dazert S. The ciliary beat frequency of middle ear mucosa in children with chronic secretory otitis media. Eur Arch Otorhinolaryngol. 2009;266(12):1865–70. doi: 10.1007/s00405-009-0984-x.CrossRefPubMedGoogle Scholar
  52. 52.
    Martins L, Guimaraes RE, Becker HM, Bedran MB, Medeiros M, Camargos P. Low prevalence of middle ear disease in cystic fibrosis patients. Jornal de Pediatria. 2011;87(1):80–3. doi: 10.2223/JPED.2061.CrossRefPubMedGoogle Scholar
  53. 53.
    Mata M, Milian L, Armengot M, Carda C. Gene mutations in primary ciliary dyskinesia related to otitis media. Curr Allerg Asthma Rep. 2014;14(3):420. doi: 10.1007/s11882-014-0420-1.CrossRefGoogle Scholar
  54. 54.
    Ma Z, Dai C, Yang S, Li M, Qi L. Protective effect of pulmonary surfactant on cilia of Eustachian tube in otitis media with effusion. Int J Pediatr Otorhinolaryngol. 2007;71(12):1889–95. doi: 10.1016/j.ijporl.2007.08.017.CrossRefPubMedGoogle Scholar
  55. 55.
    Zhu ZH, Shan YJ, Han Y, Zhu LW, Ma ZX. Pathological study of otitis media with effusion after treatment with intranasal pulmonary surfactant. Laryngoscope. 2013;123(12):3148–55. doi: 10.1002/lary.24166.CrossRefPubMedGoogle Scholar
  56. 56.
    Wake M, Smallman LA. Ciliary beat frequency of nasal and middle ear mucosa in children with otitis media with effusion. Clin Otolaryngol Allied Sci. 1992;17(2):155–7.CrossRefPubMedGoogle Scholar
  57. 57.
    Chen B, Antunes MB, Claire SE, Palmer JN, Chiu AG, Kennedy DW, et al. Reversal of chronic rhinosinusitis-associated sinonasal ciliary dysfunction. Am J Rhinol. 2007;21(3):346.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Balikesir University Faculty of Medicine Ear Nose Throat ClinicBalikesirTurkey

Personalised recommendations