New Insights into Ragweed Pollen Allergens

  • Véronique Bordas-Le Floch
  • Rachel Groeme
  • Henri Chabre
  • Véronique Baron-Bodo
  • Emmanuel Nony
  • Laurent Mascarell
  • Philippe Moingeon
Allergens (RK Bush and JA Woodfolk, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Allergens


Pollen allergens from short ragweed (Ambrosia artemisiifolia) cause severe respiratory allergies in North America and Europe. To date, ten short ragweed pollen allergens belonging to eight protein families, including the recently discovered novel major allergen Amb a 11, have been recorded in the International Union of Immunological Societies (IUIS) allergen database. With evidence that other components may further contribute to short ragweed pollen allergenicity, a better understanding of the allergen repertoire is a requisite for the design of proper diagnostic tools and efficient immunotherapies. This review provides an update on both known as well as novel candidate allergens from short ragweed pollen, identified through a comprehensive characterization of the ragweed pollen transcriptome and proteome.


Allergens Ambrosia artemisiifolia Mass spectrometry RNA sequencing Short ragweed 


Compliance with Ethics Guidelines

Conflict of Interest

Drs. Bordas-Le Floch, Rachel Groeme has a MSc, Chabre, Baron-Bodo, Nony, Mascarell, and Moingeon declare that they are employed by Stallergenes SA.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Rybncek O, Jäger S. Ambrosia (ragweed) in Europe. Allergy Clin Immunol Int. 2001;13(2):60–6.CrossRefGoogle Scholar
  2. 2.
    Arbes Jr SJ, Gergen PJ, Elliott L, Zeldin DC. Prevalences of positive skin test responses to 10 common allergens in the US population: results from the third National Health and Nutrition Examination Survey. J Allergy Clin Immunol. 2005;116(2):377–83.CrossRefPubMedGoogle Scholar
  3. 3.
    Taramarcaz P, Lambelet B, Clot B, Keimer C, Hauser C. Ragweed (Ambrosia) progression and its health risks: will Switzerland resist this invasion? Swiss Med Wkly. 2005;135(37–38):538–48.PubMedGoogle Scholar
  4. 4.
    D’Amato G, Cecchi L, Bonini S, Nunes C, Annesi-Maesano I, Behrendt H, et al. Allergenic pollen and pollen allergy in Europe. Allergy. 2007;62(9):976–90.CrossRefPubMedGoogle Scholar
  5. 5.
    Burbach GJ, Heinzerling LM, Rohnelt C, Bergmann KC, Behrendt H, Zuberbier T. Ragweed sensitization in Europe—GA(2)LEN study suggests increasing prevalence. Allergy. 2009;64(4):664–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Ruëff F, Przybilla B, Walker A, Gmeiner J, Kramer M, Sabanés-Bové D, et al. Sensitization to common ragweed in Southern Bavaria: clinical and geographical risk factors in atopic patients. Int Arch Allergy Immunol. 2012;159(1):65–74.CrossRefPubMedGoogle Scholar
  7. 7.
    Fumanal B, Chauvel B, Bretagnolle F. Estimation of pollen and seed production of common ragweed in France. Ann Agric Environ Med. 2007;14(2):233–6.PubMedGoogle Scholar
  8. 8.
    Smith M, Cecchi L, Skjøth CA, Karrer G, Šikoparija B. Common ragweed: a threat to environmental health in Europe. Environ Int. 2013;61:115–26.CrossRefPubMedGoogle Scholar
  9. 9.
    Oswalt ML, Marshall GD. Ragweed as an example of worldwide allergen expansion. Allergy Asthma Clin Immunol. 2008;4(3):130–5.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Hamaoui-Laguel L, Vautard R, Liu L, Solmon F, Viovy N, Khvorosthyanov D, et al. Effects of climate change and seed dispersal on airborne ragweed pollen loads in Europe. Nat Clim Chang. 2015. doi: 10.1038/nclimate2652.Google Scholar
  11. 11.
    Pashley CH, Satchwell J, Edwards RE. Ragweed pollen: is climate change creating a new aeroallergen problem in the UK? Clin Exp Allergy. 2015. doi: 10.1111/cea.12572.PubMedGoogle Scholar
  12. 12.
    D’Amato G, Cecchi L. Effects of climate change on environmental factors in respiratory allergic diseases. Clin Exp Allergy. 2008;38(8):1264–74.CrossRefPubMedGoogle Scholar
  13. 13.
    Ziska L, Knowlton K, Rogers C, Dalan D, Tierney N, Elder MA, et al. Recent warming by latitude associated with increased length of ragweed pollen season in central North America. Proc Natl Acad Sci U S A. 2011;108(10):4248–51.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Ghiani A, Aina R, Asero R, Bellotto E, Citterio S. Ragweed pollen collected along high-traffic roads shows a higher allergenicity than pollen sampled in vegetated areas. Allergy. 2012;67(7):887–94.CrossRefPubMedGoogle Scholar
  15. 15.••
    Kanter U, Heller W, Durner J, Winkler JB, Engel M, Behrendt H, et al. Molecular and immunological characterization of ragweed (Ambrosia artemisiifolia L.) pollen after exposure of the plants to elevated ozone over a whole growing season. PLoS One. 2013;8(4):e61518. In depth analysis of the impact of ozone exposure on A. artemisiifolia pollen. This paper reports the first transcriptome analysis of ragweed pollen performed using deep sequencing technologies.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.•
    El Kelish A, Zhao F, Heller W, Durner J, Winkler JB, Behrendt H, et al. Ragweed (Ambrosia artemisiifolia) pollen allergenicity: SuperSAGE transcriptomic analysis upon elevated CO2 and drought stress. BMC Plant Biol. 2014;14:176. Analysis of changes in transcriptome of ragweed pollen upon drought conditions or following exposure to CO2.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.•
    Zhao F, Elkelish A, Durner J, Lindermayr C, Winkler JB, Ruëff F, et al. Common ragweed (Ambrosia artemisiifolia L.): allergenicity and molecular characterisation of pollen after plant exposure to elevated NO2. Plant Cell Environ. 2015. doi: 10.1111/pce.12601. Analysis of molecular changes induced in ragweed pollen following exposure to NO2.Google Scholar
  18. 18.
    Wopfner N, Gadermaier G, Egger M, Asero R, Ebner C, Jahn-Schmid B, et al. The spectrum of allergens in ragweed and mugwort pollen. Int Arch Allergy Immunol. 2005;138(4):337–46.CrossRefPubMedGoogle Scholar
  19. 19.••
    Gadermaier G, Hauser M, Ferreira F. Allergens of weed pollen: an overview on recombinant and natural molecules. Methods. 2014;66(1):55–66. Recent and comprehensive review of known ragweed allergens and their recombinant counterparts.CrossRefPubMedGoogle Scholar
  20. 20.••
    Bouley J, Groeme R, Le Mignon M, Jain K, Chabre H, Bordas-Le Floch V, et al. Identification of the cysteine protease Amb a 11 as a novel major allergen from short ragweed. J Allergy Clin Immunol. 2015. doi: 10.1016/j.jaci.2015.03.001. First report on the identification and characterization of Amb a 11 as a novel major allergen from ragweed pollen.PubMedGoogle Scholar
  21. 21.
    Nandy A, Augustin S, Mitulski L, Cromwell O. Isoallergen analysis of pectate lyases (Amb a 1 and Amb a 2) from commercial short ragweed pollen. J Allergy Clin Immunol. 2011;127(2):AB168.CrossRefGoogle Scholar
  22. 22.
    Augustin S, Wald M, Asero R, Reese G, Klysner S, Nandy A. Assessment of Amb a 1 isoallergens as basis for development of a recombinant ragweed immunotherapeutic vaccine. Allergy. 2013;68(Supplement s97):111.Google Scholar
  23. 23.
    Rafnar T, Griffith IJ, Kuo MC, Bond JF, Rogers BL, Klapper DG. Cloning of Amb a I (antigen E), the major allergen family of short ragweed pollen. J Biol Chem. 1991;266(2):1229–36.PubMedGoogle Scholar
  24. 24.
    Nandy A, Augustin S, Wald M, Pump L, Hermann A, Treder S, et al. Recombinant major ragweed allergen Amb a 1: physicochemical characterization and immunologic comparison of five recombinant ragweed isoallergens Amb a 1.01 to Amb a 1.05. J Allergy Clin Immunol. 2013;131(2):AB16.CrossRefGoogle Scholar
  25. 25.
    Augustin S, Stock M, Cromwell O, Nandy A, Reese G. Proteomic and immunological characterization of ragweed allergens. World Allergy Organ J. 2012;5 Suppl 2:S23–4.PubMedCentralGoogle Scholar
  26. 26.
    Jahn-Schmid B, Hauser M, Wopfner N, Briza P, Berger UE, Asero R, et al. Humoral and cellular cross-reactivity between Amb a 1, the major ragweed pollen allergen, and its mugwort homolog Art v 6. J Immunol. 2012;188(3):1559–67.CrossRefPubMedGoogle Scholar
  27. 27.
    Breiteneder H, Chapman MD. Allergen Nomenclature. Allergens and Allergen Immunotherapy. CRC Press; 2014. p. 37–50.Google Scholar
  28. 28.••
    Bordas-Le Floch V, Le Mignon M, Bouley J, Groeme R, Jain K, Baron-Bodo V, et al. Identification of novel short ragweed pollen allergens using combined transcriptomic and immunoproteomic approaches. PLoS One. 2015;10(8):e0136258. Comprehensive analysis of the short ragweed pollen transcriptome, proteome and allergome using transcriptomics coupled to mass spectrometry and IgE reactivity profiling, leading to the identification of new candidate allergens.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Roebber M, Hussain R, Klapper DG, Marsh DG. Isolation and properties of a new short ragweed pollen allergen, Ra6. J Immunol. 1983;131(2):706–11.PubMedGoogle Scholar
  30. 30.
    Hiller KM, Lubahn BC, Klapper DG. Cloning and expression of ragweed allergen Amb a 6. Scand J Immunol. 1998;48(1):26–36.CrossRefPubMedGoogle Scholar
  31. 31.
    Asero R, Wopfner N, Gruber P, Gadermaier G, Ferreira F. Artemisia and Ambrosia hypersensitivity: co-sensitization or co-recognition? Clin Exp Allergy. 2006;36(5):658–65.CrossRefPubMedGoogle Scholar
  32. 32.
    Gadermaier G, Wopfner N, Wallner M, Egger M, Didierlaurent A, Regl G, et al. Array-based profiling of ragweed and mugwort pollen allergens. Allergy. 2008;63(11):1543–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Wopfner N, Gruber P, Wallner M, Briza P, Ebner C, Mari A, et al. Molecular and immunological characterization of novel weed pollen pan-allergens. Allergy. 2008;63(7):872–81.CrossRefPubMedGoogle Scholar
  34. 34.
    Klapper DG, Goodfriend L, Capra JD. Amino acid sequence of ragweed allergen Ra3. Biochemistry. 1980;19(25):5729–34.CrossRefPubMedGoogle Scholar
  35. 35.
    Adolphson C, Goodfriend L, Gleich GJ. Reactivity of ragweed allergens with IgE antibodies. Analyses by leukocyte histamine release and the radioallergosorbent test and determination of cross-reactivity. J Allergy Clin Immunol. 1978;62(4):197–210.CrossRefPubMedGoogle Scholar
  36. 36.
    Roebber M, Marsh DG. Isolation and characterization of allergen Amb a VII from short ragweed pollen. J Allergy Clin Immunol. 1991;87(2):324.CrossRefGoogle Scholar
  37. 37.
    Leonard R, Wopfner N, Pabst M, Stadlmann J, Petersen BO, Duus JO, et al. A new allergen from ragweed (Ambrosia artemisiifolia) with homology to Art v 1 from mugwort. J Biol Chem. 2010;285(35):27192–200.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Roebber M, Klapper DG, Marsh DG. Two isoallergens of short ragweed component Ra5. J Immunol. 1982;129(1):120–5.PubMedGoogle Scholar
  39. 39.
    Metzler WJ, Valentine K, Roebber M, Marsh DG, Mueller L. Proton resonance assignments and three-dimensional solution structure of the ragweed allergen Amb a V by nuclear magnetic resonance spectroscopy. Biochemistry. 1992;31(37):8697–705.CrossRefPubMedGoogle Scholar
  40. 40.
    Ghosh B, Perry MP, Rafnar T, Marsh DG. Cloning and expression of immunologically active recombinant Amb a V allergen of short ragweed (Ambrosia artemisiifolia) pollen. J Immunol. 1993;150(12):5391–9.PubMedGoogle Scholar
  41. 41.
    Gadermaier G, Dedic A, Obermeyer G, Frank S, Himly M, Ferreira F. Biology of weed pollen allergens. Curr Allergy Asthma Rep. 2004;4(5):391–400.CrossRefPubMedGoogle Scholar
  42. 42.
    Radauer C, Nandy A, Ferreira F, Goodman RE, Larsen JN, Lidholm J, et al. Update of the WHO/IUIS Allergen Nomenclature Database based on analysis of allergen sequences. Allergy. 2014;69(4):413–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Chapman MD. Allergen nomenclature. Clin Allergy Immunol. 2008;21:47–58.PubMedGoogle Scholar
  44. 44.
    Evans VC, Barker G, Heesom KJ, Fan J, Bessant C, Matthews DA. De novo derivation of proteomes from transcriptomes for transcript and protein identification. Nat Methods. 2012;9(12):1207–11.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Nesvizhskii AI. Proteogenomics: concepts, applications and computational strategies. Nat Methods. 2014;11(11):1114–25.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Schulten V, Peters B, Sette A. New strategies for allergen T cell epitope identification: going beyond IgE. Int Arch Allergy Immunol. 2014;165(2):75–82.CrossRefPubMedGoogle Scholar
  47. 47.
    Campbell BC, Gilding EK, Timbrell V, Guru P, Loo D, Zennaro D, et al. Total transcriptome, proteome, and allergome of Johnson grass pollen, which is important for allergic rhinitis in subtropical regions. J Allergy Clin Immunol. 2015;135(1):133–42.CrossRefPubMedGoogle Scholar
  48. 48.
    Chan T-F, Ji K-M, Yim AK-Y, Liu X-Y, Zhou J-W, Li R-Q, et al. The draft genome, transcriptome, and microbiome of Dermatophagoides farinae reveal a broad spectrum of dust mite allergens. J Allergy Clin Immunol. 2015;135(2):539–48.CrossRefPubMedGoogle Scholar
  49. 49.
    Schulten V, Greenbaum JA, Hauser M, McKinney DM, Sidney J, Kolla R, et al. Previously undescribed grass pollen antigens are the major inducers of T helper 2 cytokine-producing T cells in allergic individuals. Proc Natl Acad Sci U S A. 2013;110(9):3459–64.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    King TP, Norman PS, Lichtenstein LM. Isolation and characterization of allergens from ragweed pollen. IV Biochem. 1967;6(7):1992–2000.CrossRefGoogle Scholar
  51. 51.
    King TP, Norman PS, Connell JT. Isolation and characterization of allergens from ragweed pollen. II. Biochemistry. 1964;3(3):458–68.CrossRefPubMedGoogle Scholar
  52. 52.
    Wopfner N, Jahn-Schmid B, Schmidt G, Christ T, Hubinger G, Briza P, et al. The alpha and beta subchain of Amb a 1, the major ragweed-pollen allergen show divergent reactivity at the IgE and T-cell level. Mol Immunol. 2009;46(10):2090–7.CrossRefPubMedGoogle Scholar
  53. 53.
    Jahn-Schmid B, Wopfner N, Hubinger G, Asero R, Ebner C, Ferreira F et al. The T-cell response to Amb a 1 is characterized by 3 dominant epitopes and multiple MHC restriction elements. J Allergy Clin Immunol. 2010;126(5):1068–71.Google Scholar
  54. 54.
    Singer BD, Ziska LH, Frenz DA, Gebhard DE, Straka JG. Increasing Amb a 1 content in common ragweed (Ambrosia artemisiifolia) pollen as a function of rising atmospheric CO2 concentration. Funct Plant Biol. 2005;32(7):667–70.CrossRefGoogle Scholar
  55. 55.
    Wopfner N, Gruber P, van Ree R, Mari A, Ferreira F. A novel two EF-hand Ca2+−binding allergen from ragweed pollen. J Allergy Clin Immunol. 2004;113(2, Supplement):S300–1.CrossRefGoogle Scholar
  56. 56.
    Conti A, Giuffrida MG, Hoffmann-Sommergruber K, Wagner S, Amato S, Mistrello G, et al. Identification of latex UDP glucose pyrophosphorylase (Hev b UDPGP) as a novel cause of latex fruit allergy syndrome. Eur Ann Allergy Clin Immunol. 2007;39(4):116–8.PubMedGoogle Scholar
  57. 57.
    Hur GY, Park HJ, Kim HA, Ye YM, Park HS. Identification of Dioscorea batatas (sanyak) allergen as an inhalant and oral allergen. J Korean Med Sci. 2008;23(1):72–6.PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Radauer C, Bublin M, Wagner S, Mari A, Breiteneder H. Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J Allergy Clin Immunol. 2008;121(4):847–52.CrossRefPubMedGoogle Scholar
  59. 59.
    Fonseca C, Planchon S, Pinheiro C, Renaut J, Ricardo CP, Oliveira MM, et al. Maize IgE binding proteins: each plant a different profile? Proteome Sci. 2014;12(1):17.PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Radauer C, Breiteneder H. Pollen allergens are restricted to few protein families and show distinct patterns of species distribution. J Allergy Clin Immunol. 2006;117(1):141–7.CrossRefPubMedGoogle Scholar
  61. 61.
    Nolte H, Amar N, Bernstein DI, Lanier BQ, Creticos P, Berman G, et al. Safety and tolerability of a short ragweed sublingual immunotherapy tablet. Ann Allergy Asthma Immunol. 2014;113(1):93–100. e3.CrossRefPubMedGoogle Scholar
  62. 62.
    Ihler F, Canis M. Ragweed-induced allergic rhinoconjunctivitis: current and emerging treatment options. J Asthma Allergy. 2015;8:15–24.PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Hafner RP, Salapatek A, Patel D, Larché M, Laidler P. Validation of peptide immunotherapy as a new approach in the treatment of allergic rhinoconjunctivitis: the clinical benefits of treatment with Amb a 1 derived T cell epitopes. J Allergy Clin Immunol.129(2):AB368.Google Scholar
  64. 64.
    Chapman MD, Wunschmann S, Pomes A. Proteases as Th2 adjuvants. Curr Allergy Asthma Rep. 2007;7(5):363–7.CrossRefPubMedGoogle Scholar
  65. 65.
    Shakib F, Ghaemmaghami AM, Sewell HF. The molecular basis of allergenicity. Trends Immunol. 2008;29(12):633–42.CrossRefPubMedGoogle Scholar
  66. 66.
    Jacquet A. Interactions of airway epithelium with protease allergens in the allergic response. Clin Exp Allergy. 2011;41(3):305–11.CrossRefPubMedGoogle Scholar
  67. 67.
    Cunningham PT, Elliot CE, Lenzo JC, Jarnicki AG, Larcombe AN, Zosky GR, et al. Sensitizing and Th2 adjuvant activity of cysteine protease allergens. Int Arch Allergy Immunol. 2012;158(4):347–58.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Véronique Bordas-Le Floch
    • 1
  • Rachel Groeme
    • 1
  • Henri Chabre
    • 1
  • Véronique Baron-Bodo
    • 1
  • Emmanuel Nony
    • 1
  • Laurent Mascarell
    • 1
  • Philippe Moingeon
    • 1
  1. 1.StallergenesAntony cedexFrance

Personalised recommendations