Advertisement

Review of Environmental Impact on the Epigenetic Regulation of Atopic Diseases

  • Saman Sabounchi
  • Jenna Bollyky
  • Kari Nadeau
Food Allergy (T Green, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Food Allergy

Abstract

There has been significant increase in the prevalence of atopy over the past decade that cannot be explained by genetic predisposition. Environmental factors including nutrition, the uterine environment, and lifestyle factors are known to play a role in gene expression through epigenetic modifications. In this article, we review the literature on the environmental impact on epigenetic modulation of atopic diseases including asthma, food allergy, eczema, and allergic rhinitis. Recent public release of epigenomic data for hundreds of human tissues provides a powerful resource for further investigation of the molecular basis of atopic diseases.

Keywords

Epigenetics Atopy Environmental factors Food allergy Nutrition Uterine life 

Notes

Compliance with Ethics Guidelines

Conflict of Interest

Saman Sabounchi, Jenna Bollyky, and Kari Nadeau declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Jurakic Toncic R, Marinovic B. What is new and hot in genetics of human atopic dermatitis: shifting paradigms in the landscape of allergic skin diseases. Acta Dermatovenerol Croat ADC. 2014;22(4):313–5.Google Scholar
  2. 2.•
    Prescott SL. Early-life environmental determinants of allergic diseases and the wider pandemic of inflammatory noncommunicable diseases. J Allergy Clin Immunol. 2013;131(1):23–30. Good article regarding importance of early life environmental factors on allergic disease.PubMedGoogle Scholar
  3. 3.
    Runyon RS, Cachola LM, Rajeshuni N, Hunter T, Garcia M, Ahn R, et al. Asthma discordance in twins is linked to epigenetic modifications of T cells. PLoS One. 2012;7(11), e48796.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Stefanowicz D, Hackett TL, Garmaroudi FS, Gunther OP, Neumann S, Sutanto EN, et al. DNA methylation profiles of airway epithelial cells and PBMCs from healthy, atopic and asthmatic children. PLoS One. 2012;7(9), e44213.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Soto-Ramirez N, Arshad SH, Holloway JW, Zhang H, Schauberger E, Ewart S, et al. The interaction of genetic variants and DNA methylation of the interleukin-4 receptor gene increase the risk of asthma at age 18 years. Clin Epigenetics. 2013;5(1):1.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Breton CV, Siegmund KD, Joubert BR, Wang X, Qui W, Carey V, et al. Prenatal tobacco smoke exposure is associated with childhood DNA CpG methylation. PLoS One. 2014;9(6), e99716.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Morales E, Bustamante M, Vilahur N, Escaramis G, Montfort M, de Cid R, et al. DNA hypomethylation at ALOX12 is associated with persistent wheezing in childhood. Am J Respir Crit Care Med. 2012;185(9):937–43.PubMedGoogle Scholar
  8. 8.
    Perera F, Tang WY, Herbstman J, Tang D, Levin L, Miller R, et al. Relation of DNA methylation of 5'-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS One. 2009;4(2), e4488.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Fu A, Leaderer BP, Gent JF, Leaderer D, Zhu Y. An environmental epigenetic study of ADRB2 5'-UTR methylation and childhood asthma severity. Clin Exp Allergy J Br Soc Allergy Clin Immunol. 2012;42(11):1575–81.Google Scholar
  10. 10.
    Luo Y, Zhou B, Zhao M, Tang J, Lu Q. Promoter demethylation contributes to TSLP overexpression in skin lesions of patients with atopic dermatitis. Clin Exp Dermatol. 2014;39(1):48–53.PubMedGoogle Scholar
  11. 11.
    Isidoro-Garcia M, Sanz C, Garcia-Solaesa V, Pascual M, Pescador DB, Lorente F, et al. PTGDR gene in asthma: a functional, genetic, and epigenetic study. Allergy. 2011;66(12):1553–62.PubMedGoogle Scholar
  12. 12.
    Pascual M, Suzuki M, Isidoro-Garcia M, Padron J, Turner T, Lorente F, et al. Epigenetic changes in B lymphocytes associated with house dust mite allergic asthma. Epigenetics Off J DNA Methylation Soc. 2011;6(9):1131–7.Google Scholar
  13. 13.
    Kim YJ, Park SW, Kim TH, Park JS, Cheong HS, Shin HD, et al. Genome-wide methylation profiling of the bronchial mucosa of asthmatics: relationship to atopy. BMC Med Genet. 2013;14:39.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Joubert BR, Haberg SE, Nilsen RM, Wang X, Vollset SE, Murphy SK, et al. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect. 2012;120(10):1425–31.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Reinius LE, Gref A, Saaf A, Acevedo N, Joerink M, Kupczyk M, et al. DNA methylation in the Neuropeptide S Receptor 1 (NPSR1) promoter in relation to asthma and environmental factors. PLoS One. 2013;8(1), e53877.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Michel S, Busato F, Genuneit J, Pekkanen J, Dalphin JC, Riedler J, et al. Farm exposure and time trends in early childhood may influence DNA methylation in genes related to asthma and allergy. Allergy. 2013;68(3):355–64.PubMedGoogle Scholar
  17. 17.
    Slaats GG, Reinius LE, Alm J, Kere J, Scheynius A, Joerink M. DNA methylation levels within the CD14 promoter region are lower in placentas of mothers living on a farm. Allergy. 2012;67(7):895–903.PubMedGoogle Scholar
  18. 18.
    Kohli A, Garcia MA, Miller RL, Maher C, Humblet O, Hammond SK, et al. Secondhand smoke in combination with ambient air pollution exposure is associated with increasedx CpG methylation and decreased expression of IFN-gamma in T effector cells and Foxp3 in T regulatory cells in children. Clin Epigenetics. 2012;4(1):17.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Tang WY, Levin L, Talaska G, Cheung YY, Herbstman J, Tang D, et al. Maternal exposure to polycyclic aromatic hydrocarbons and 5'-CpG methylation of interferon-gamma in cord white blood cells. Environ Health Perspect. 2012;120(8):1195–200.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Rossnerova A, Tulupova E, Tabashidze N, Schmuczerova J, Dostal M, Rossner Jr P, et al. Factors affecting the 27K DNA methylation pattern in asthmatic and healthy children from locations with various environments. Mutat Res. 2013;741–742:18–26.PubMedGoogle Scholar
  21. 21.
    Nadeau K, McDonald-Hyman C, Noth EM, Pratt B, Hammond SK, Balmes J, et al. Ambient air pollution impairs regulatory T-cell function in asthma. J Allergy Clin Immunol. 2010;126(4):845–52. e10.PubMedGoogle Scholar
  22. 22.
    Breton CV, Salam MT, Wang X, Byun HM, Siegmund KD, Gilliland FD. Particulate matter, DNA methylation in nitric oxide synthase, and childhood respiratory disease. Environ Health Perspect. 2012;120(9):1320–6.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Brunst KJ, Leung YK, Ryan PH, Khurana Hershey GK, Levin L, Ji H, et al. Forkhead box protein 3 (FOXP3) hypermethylation is associated with diesel exhaust exposure and risk for childhood asthma. J Allergy Clin Immunol. 2013;131(2):592–4. e1-3.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Tarantini L, Bonzini M, Apostoli P, Pegoraro V, Bollati V, Marinelli B, et al. Effects of particulate matter on genomic DNA methylation content and iNOS promoter methylation. Environ Health Perspect. 2009;117(2):217–22.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Munthe-Kaas MC, Bertelsen RJ, Torjussen TM, Hjorthaug HS, Undlien DE, Lyle R, et al. Pet keeping and tobacco exposure influence CD14 methylation in childhood. Pediatr Allergy Immunol Off Publ Eur Soc Pediatr Allergy Immunol. 2012;23(8):747–54.Google Scholar
  26. 26.
    Miozzo M, Vaira V, Sirchia SM. Epigenetic alterations in cancer and personalized cancer treatment. Future Oncol (London, England). 2015;11(2):333–48.Google Scholar
  27. 27.
    Sharon Chinthrajah KV, Morvarid Tavassoli, Kari CNadeau, Global Atlas of Allergy 2014.Google Scholar
  28. 28.
    Fatemi M, Pao MM, Jeong S, Gal-Yam EN, Egger G, Weisenberger DJ, et al. Footprinting of mammalian promoters: use of a CpG DNA methyltransferase revealing nucleosome positions at a single molecule level. Nucleic Acids Res. 2005;33(20), e176.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Szulwach KE, Jin P. Integrating DNA methylation dynamics into a framework for understanding epigenetic codes. BioEssays News Rev Mol Cell Dev Biol. 2014;36(1):107–17.Google Scholar
  30. 30.
    Holliday R. DNA methylation and epigenetic inheritance. Philos Trans R Soc Lond Ser B Biol Sci. 1990;326(1235):329–38.Google Scholar
  31. 31.••
    Harb H, Renz H. Update on epigenetics in allergic disease. J Allergy Clin Immunol. 2015;135(1):15–24. A recent article about different environmental factors effecting epigenetics in allergic disease.PubMedGoogle Scholar
  32. 32.
    Weissmann F, Lyko F. Cooperative interactions between epigenetic modifications and their function in the regulation of chromosome architecture. BioEssays News Rev Mol Cell Dev Biol. 2003;25(8):792–7.Google Scholar
  33. 33.
    Sadakierska-Chudy A, Filip M. A comprehensive view of the epigenetic landscape. Part II: histone post-translational modification, nucleosome level, and chromatin regulation by ncRNAs. Neurotox Res. 2015;27(2):172–97.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Dan J, Yang J, Liu Y, Xiao A, Liu L. Roles for histone acetylation in regulation of telomere elongation and two-cell state in mouse es cells. J Cell Physiol. 2015.Google Scholar
  35. 35.
    Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet. 2012;13(5):343–57.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Tsuji G, Okiyama N, Villarroel VA, Katz SI. Histone deacetylase 6 inhibition impairs effector CD8 T-cell functions during skin inflammation. J Allergy Clin Immunol. 2014.Google Scholar
  37. 37.
    Avni O, Lee D, Macian F, Szabo SJ, Glimcher LH, Rao A. T(H) cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nat Immunol. 2002;3(7):643–51.PubMedGoogle Scholar
  38. 38.
    Wang JW, Li K, Hellermann G, Lockey RF, Mohapatra S, Mohapatra S. Regulating the regulators: microRNA and asthma. World Allergy Organ J. 2011;4(6):94–103.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Davalos V, Esteller M. MicroRNAs and cancer epigenetics: a macrorevolution. Curr Opin Oncol. 2010;22(1):35–45.PubMedGoogle Scholar
  40. 40.
    Saito Y, Saito H, Liang G, Friedman JM. Epigenetic alterations and microRNA misexpression in cancer and autoimmune diseases: a critical review. Clin Rev Allergy Immunol. 2014;47(2):128–35.PubMedGoogle Scholar
  41. 41.
    Robinson DS. The role of the T cell in asthma. J Allergy Clin Immunol. 2010;126(6):1081–91. quiz 92–3.PubMedGoogle Scholar
  42. 42.
    Lovinsky-Desir S, Ridder R, Torrone D, Maher C, Narula S, Scheuerman M, et al. DNA methylation of the allergy regulatory gene interferon gamma varies by age, sex, and tissue type in asthmatics. Clin Epigenetics. 2014;6(1):9.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Tindemans I, Serafini N, Di Santo JP, Hendriks RW. GATA-3 function in innate and adaptive immunity. Immunity. 2014;41(2):191–206.PubMedGoogle Scholar
  44. 44.
    Kwon NH, Kim JS, Lee JY, Oh MJ, Choi DC. DNA methylation and the expression of IL-4 and IFN-gamma promoter genes in patients with bronchial asthma. J Clin Immunol. 2008;28(2):139–46.PubMedGoogle Scholar
  45. 45.
    Scheinman EJ, Avni O. Transcriptional regulation of GATA3 in T helper cells by the integrated activities of transcription factors downstream of the interleukin-4 receptor and T cell receptor. J Biol Chem. 2009;284(5):3037–48.PubMedGoogle Scholar
  46. 46.••
    Begin P, Nadeau KC. Epigenetic regulation of asthma and allergic disease. Allergy Asthma Clin Immunol Off J Can Soc Allergy Clin Immunol. 2014;10(1):27. Very good review of articles about various epigenetic mechanisms in asthma and allergic disease.Google Scholar
  47. 47.
    Zhang Y, Maksimovic J, Naselli G, Qian J, Chopin M, Blewitt ME, et al. Genome-wide DNA methylation analysis identifies hypomethylated genes regulated by FOXP3 in human regulatory T cells. Blood. 2013;122(16):2823–36.PubMedCentralPubMedGoogle Scholar
  48. 48.
    Passerini L, Santoni de Sio FR, Roncarolo MG, Bacchetta R. Forkhead box P3: the peacekeeper of the immune system. Int Rev Immunol. 2014;33(2):129–45.PubMedGoogle Scholar
  49. 49.•
    Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature. 2010;463(7282):808–12. Good article regarding importance of Foxp3 on regulatory T cell.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Kim HP, Leonard WJ. CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J Exp Med. 2007;204(7):1543–51.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Ogawa C, Tone Y, Tsuda M, Peter C, Waldmann H, Tone M. TGF-beta-mediated Foxp3 gene expression is cooperatively regulated by Stat5, Creb, and AP-1 through CNS2. J Immunol (Baltimore, Md : 1950). 2014;192(1):475–83.PubMedCentralGoogle Scholar
  52. 52.
    Polansky JK, Kretschmer K, Freyer J, Floess S, Garbe A, Baron U, et al. DNA methylation controls Foxp3 gene expression. Eur J Immunol. 2008;38(6):1654–63.PubMedGoogle Scholar
  53. 53.
    Feng Y, Arvey A, Chinen T, van der Veeken J, Gasteiger G, Rudensky AY. Control of the inheritance of regulatory T cell identity by a cis element in the Foxp3 locus. Cell. 2014;158(4):749–63.PubMedGoogle Scholar
  54. 54.
    Lim RH, Kobzik L, Dahl M. Risk for asthma in offspring of asthmatic mothers versus fathers: a meta-analysis. PLoS One. 2010;5(4), e10134.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Hollingsworth JW, Maruoka S, Boon K, Garantziotis S, Li Z, Tomfohr J, et al. In utero supplementation with methyl donors enhances allergic airway disease in mice. J Clin Investig. 2008;118(10):3462–9.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Prescott S, Saffery R. The role of epigenetic dysregulation in the epidemic of allergic disease. Clin Epigenetics. 2011;2(2):223–32.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Schaub B, Liu J, Hoppler S, Schleich I, Huehn J, Olek S, et al. Maternal farm exposure modulates neonatal immune mechanisms through regulatory T cells. J Allergy Clin Immunol. 2009;123(4):774–82. e5.PubMedGoogle Scholar
  58. 58.
    Noverr MC, Huffnagle GB. The ‘microflora hypothesis’ of allergic diseases. Clin Exp Allergy J Br Soc Allergy Clin Immunol. 2005;35(12):1511–20.Google Scholar
  59. 59.
    Schroder PC, Li J, Wong GW, Schaub B. The rural–urban enigma of allergy: what can we learn from studies around the world? Pediatr Allergy Immunol Off Publ Eur Soc Pediatr Allergy Immunol. 2015;26(2):95–102.Google Scholar
  60. 60.
    Horak E, Morass B, Ulmer H, Genuneit J, Braun-Fahrlander C, von Mutius E. Prevalence of wheezing and atopic diseases in Austrian schoolchildren in conjunction with urban, rural or farm residence. Wien Klin Wochenschr. 2014;126(17–18):532–6.PubMedGoogle Scholar
  61. 61.
    Genuneit J. Exposure to farming environments in childhood and asthma and wheeze in rural populations: a systematic review with meta-analysis. Pediatr Allergy Immunol Off Publ Eur Soc Pediatr Allergy Immunol. 2012;23(6):509–18.Google Scholar
  62. 62.
    Lluis A, Depner M, Gaugler B, Saas P, Casaca VI, Raedler D, et al. Increased regulatory T-cell numbers are associated with farm milk exposure and lower atopic sensitization and asthma in childhood. J Allergy Clin Immunol. 2014;133(2):551–9.PubMedGoogle Scholar
  63. 63.
    Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, et al. A large-scale, consortium-based genomewide association study of asthma. N Engl J Med. 2010;363(13):1211–21.PubMedCentralPubMedGoogle Scholar
  64. 64.
    Acevedo N, Reinius LE, Greco D, Gref A, Orsmark-Pietras C, Persson H, et al. Risk of childhood asthma is associated with CpG-site polymorphisms, regional DNA methylation and mRNA levels at the GSDMB/ORMDL3 locus. Hum Mol Genet. 2015;24(3):875–90.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Brauner EV, Loft S, Raaschou-Nielsen O, Vogel U, Andersen PS, Sorensen M. Effects of a 17q21 chromosome gene variant, tobacco smoke and furred pets on infant wheeze. Genes Immun. 2012;13(1):94–7.PubMedGoogle Scholar
  66. 66.
    Schieck M, Sharma V, Michel S, Toncheva AA, Worth L, Potaczek DP, et al. A polymorphism in the TH 2 locus control region is associated with changes in DNA methylation and gene expression. Allergy. 2014;69(9):1171–80.PubMedGoogle Scholar
  67. 67.
    Leavy O. Asthma and allergy: prenatal protection through TLRs. Nat Rev Immunol. 2010;10(1):8–9.Google Scholar
  68. 68.
    Conrad ML, Ferstl R, Teich R, Brand S, Blumer N, Yildirim AO, et al. Maternal TLR signaling is required for prenatal asthma protection by the nonpathogenic microbe Acinetobacter lwoffii F78. J Exp Med. 2009;206(13):2869–77.PubMedCentralPubMedGoogle Scholar
  69. 69.
    Brand S, Teich R, Dicke T, Harb H, Yildirim AO, Tost J, et al. Epigenetic regulation in murine offspring as a novel mechanism for transmaternal asthma protection induced by microbes. J Allergy Clin Immunol. 2011;128(3):618–25. e1-7.PubMedGoogle Scholar
  70. 70.
    Turunen R, Koistinen A, Vuorinen T, Arku B, Soderlund-Venermo M, Ruuskanen O, et al. The first wheezing episode: respiratory virus etiology, atopic characteristics, and illness severity. Pediatr Allergy Immunol Off Publ Eur Soc Pediatr Allergy Immunol. 2014;25(8):796–803.Google Scholar
  71. 71.
    McErlean P, Favoreto Jr S, Costa FF, Shen J, Quraishi J, Biyasheva A, et al. Human rhinovirus infection causes different DNA methylation changes in nasal epithelial cells from healthy and asthmatic subjects. BMC Med Genet. 2014;7:37.Google Scholar
  72. 72.
    Orivuori L, Loss G, Roduit C, Dalphin JC, Depner M, Genuneit J, et al. Soluble immunoglobulin A in breast milk is inversely associated with atopic dermatitis at early age: the PASTURE cohort study. Clin Exp Allergy J Br Soc Allergy Clin Immunol. 2014;44(1):102–12.Google Scholar
  73. 73.
    Foolad N, Brezinski EA, Chase EP, Armstrong AW. Effect of nutrient supplementation on atopic dermatitis in children: a systematic review of probiotics, prebiotics, formula, and fatty acids. JAMA Dermatol. 2013;149(3):350–5.PubMedGoogle Scholar
  74. 74.
    Elazab N, Mendy A, Gasana J, Vieira ER, Quizon A, Forno E. Probiotic administration in early life, atopy, and asthma: a meta-analysis of clinical trials. Pediatrics. 2013;132(3):e666–76.PubMedGoogle Scholar
  75. 75.
    Fiocchi A, Pawankar R, Cuello-Garcia C, Ahn K, Al-Hammadi S, Agarwal A, et al. World Allergy Organization-McMaster University Guidelines for Allergic Disease Prevention (GLAD-P): probiotics. World Allergy Organ J. 2015;8(1):4.PubMedCentralPubMedGoogle Scholar
  76. 76.
    Berni Canani R, Nocerino R, Terrin G, Coruzzo A, Cosenza L, Leone L, et al. Effect of Lactobacillus GG on tolerance acquisition in infants with cow’s milk allergy: a randomized trial. J Allergy Clin Immunol. 2012;129(2):580–2. 2.e1-5.PubMedGoogle Scholar
  77. 77.
    Schiavi E, Barletta B, Butteroni C, Corinti S, Boirivant M, Di Felice G. Oral therapeutic administration of a probiotic mixture suppresses established Th2 responses and systemic anaphylaxis in a murine model of food allergy. Allergy. 2011;66(4):499–508.PubMedGoogle Scholar
  78. 78.
    Tang ML, Ponsonby AL, Orsini F, Tey D, Robinson M, Su EL, et al. Administration of a probiotic with peanut oral immunotherapy: a randomized trial. J Allergy Clin Immunol. 2015;135(3):737–44.PubMedGoogle Scholar
  79. 79.
    Molter A, Agius RM, de Vocht F, Lindley S, Gerrard W, Lowe L, et al. Long-term exposure to PM10 and NO2 in association with lung volume and airway resistance in the MAAS birth cohort. Environ Health Perspect. 2013;121(10):1232–8.PubMedCentralPubMedGoogle Scholar
  80. 80.
    Klingbeil EC, Hew KM, Nygaard UC, Nadeau KC. Polycyclic aromatic hydrocarbons, tobacco smoke, and epigenetic remodeling in asthma. Immunol Res. 2014;58(2–3):369–73.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Gaffin JM, Kanchongkittiphon W, Phipatanakul W. Perinatal and early childhood environmental factors influencing allergic asthma immunopathogenesis. Int Immunopharmacol. 2014;22(1):21–30.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Burke H, Leonardi-Bee J, Hashim A, Pine-Abata H, Chen Y, Cook DG, et al. Prenatal and passive smoke exposure and incidence of asthma and wheeze: systematic review and meta-analysis. Pediatrics. 2012;129(4):735–44.PubMedGoogle Scholar
  83. 83.
    Rehan VK, Liu J, Naeem E, Tian J, Sakurai R, Kwong K, et al. Perinatal nicotine exposure induces asthma in second generation offspring. BMC Med. 2012;10:129.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Li YF, Langholz B, Salam MT, Gilliland FD. Maternal and grandmaternal smoking patterns are associated with early childhood asthma. Chest. 2005;127(4):1232–41.PubMedGoogle Scholar
  85. 85.
    Murphy SK, Hollingsworth JW. Stress: a possible link between genetics, epigenetics, and childhood asthma. Am J Respir Crit Care Med. 2013;187(6):563–4.PubMedCentralPubMedGoogle Scholar
  86. 86.
    Suter M, Abramovici A, Showalter L, Hu M, Shope CD, Varner M, et al. In utero tobacco exposure epigenetically modifies placental CYP1A1 expression. Metab Clin Exp. 2010;59(10):1481–90.PubMedCentralPubMedGoogle Scholar
  87. 87.
    Dominguez-Salas P, Cox SE, Prentice AM, Hennig BJ, Moore SE. Maternal nutritional status, C(1) metabolism and offspring DNA methylation: a review of current evidence in human subjects. Proc Nutr Soc. 2012;71(1):154–65.PubMedCentralPubMedGoogle Scholar
  88. 88.
    Martinussen MP, Risnes KR, Jacobsen GW, Bracken MB. Folic acid supplementation in early pregnancy and asthma in children aged 6 years. Am J Obstet Gynecol. 2012;206(1):72. e1-7.PubMedCentralPubMedGoogle Scholar
  89. 89.
    Barua S, Kuizon S, Junaid MA. Folic acid supplementation in pregnancy and implications in health and disease. J Biomed Sci. 2014;21:77.PubMedCentralPubMedGoogle Scholar
  90. 90.
    McGarel C, Pentieva K, Strain JJ, McNulty H. Emerging roles for folate and related B-vitamins in brain health across the lifecycle. Proc Nutr Soc. 2015;74(1):46–55.PubMedGoogle Scholar
  91. 91.
    Yang L, Jiang L, Bi M, Jia X, Wang Y, He C, et al. High dose of maternal folic acid supplementation is associated to infant asthma. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc. 2015;75:88–93.Google Scholar
  92. 92.
    Zetstra-van der Woude PA, De Walle HE, Hoek A, Bos HJ, Boezen HM, Koppelman GH, et al. Maternal high-dose folic acid during pregnancy and asthma medication in the offspring. Pharmacoepidemiol Drug Saf. 2014;23(10):1059–65.PubMedGoogle Scholar
  93. 93.
    Bekkers MB, Elstgeest LE, Scholtens S, Haveman-Nies A, de Jongste JC, Kerkhof M, et al. Maternal use of folic acid supplements during pregnancy, and childhood respiratory health and atopy. Eur Respir J. 2012;39(6):1468–74.PubMedGoogle Scholar
  94. 94.
    Yamaguchi Y, Takamura H, Tada Y, Akagi T, Oyama K, Miyashita T, et al. Nanog positively regulates Zfp57 expression in mouse embryonic stem cells. Biochem Biophys Res Commun. 2014;453(4):817–20.PubMedGoogle Scholar
  95. 95.
    Amarasekera M, Martino D, Ashley S, Harb H, Kesper D, Strickland D et al. Genome-wide DNA methylation profiling identifies a folate-sensitive region of differential methylation upstream of ZFP57-imprinting regulator in humans. FASEB J Off Publ Fed Am Soc Exp Biol. 2014.Google Scholar
  96. 96.
    Kremmyda LS, Vlachava M, Noakes PS, Diaper ND, Miles EA, Calder PC. Atopy risk in infants and children in relation to early exposure to fish, oily fish, or long-chain omega-3 fatty acids: a systematic review. Clin Rev Allergy Immunol. 2011;41(1):36–66.PubMedGoogle Scholar
  97. 97.
    Netting MJ, Middleton PF, Makrides M. Does maternal diet during pregnancy and lactation affect outcomes in offspring? A systematic review of food-based approaches. Nutrition (Burbank, Los Angeles County, Calif). 2014;30(11–12):1225–41.Google Scholar
  98. 98.
    Miles EA, Calder PC. Omega-6 and omega-3 polyunsaturated fatty acids and allergic diseases in infancy and childhood. Curr Pharm Des. 2014;20(6):946–53.PubMedGoogle Scholar
  99. 99.
    Palmer DJ, Sullivan T, Gold MS, Prescott SL, Heddle R, Gibson RA, et al. Effect of n-3 long chain polyunsaturated fatty acid supplementation in pregnancy on infants’ allergies in first year of life: randomised controlled trial. BMJ (Clin Res Ed). 2012;344:e184.Google Scholar
  100. 100.
    Adkins Y, Kelley DS. Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. J Nutr Biochem. 2010;21(9):781–92.PubMedGoogle Scholar
  101. 101.
    Xue B, Yang Z, Wang X, Shi H. Omega-3 polyunsaturated fatty acids antagonize macrophage inflammation via activation of AMPK/SIRT1 pathway. PLoS One. 2012;7(10), e45990.PubMedCentralPubMedGoogle Scholar
  102. 102.
    Yang Z, Kahn BB, Shi H, Xue BZ. Macrophage alpha1 AMP-activated protein kinase (alpha1AMPK) antagonizes fatty acid-induced inflammation through SIRT1. J Biol Chem. 2010;285(25):19051–9.PubMedCentralPubMedGoogle Scholar
  103. 103.
    Shek LP, Chong MF, Lim JY, Soh SE, Chong YS. Role of dietary long-chain polyunsaturated fatty acids in infant allergies and respiratory diseases. Clin Dev Immunol. 2012;2012:730568.PubMedCentralPubMedGoogle Scholar
  104. 104.
    Bildstrup L, Backer V, Thomsen SF. Increased body mass index predicts severity of asthma symptoms but not objective asthma traits in a large sample of asthmatics. J Asthma Off J Assoc Care Asthma. 2015:1–22.Google Scholar
  105. 105.
    Silveira DH, Zhang L, Prietsch SO, Vecchi AA, Susin LR. Association between dietary habits and asthma severity in children. Indian Pediatr. 2015;52(1):25–30.PubMedGoogle Scholar
  106. 106.
    Vucetic Z, Kimmel J, Totoki K, Hollenbeck E, Reyes TM. Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinology. 2010;151(10):4756–64.PubMedCentralPubMedGoogle Scholar
  107. 107.
    Rastogi D, Suzuki M, Greally JM. Differential epigenome-wide DNA methylation patterns in childhood obesity-associated asthma. Sci Rep. 2013;3:2164.PubMedCentralPubMedGoogle Scholar
  108. 108.
    Williams DR, Sternthal M, Wright RJ. Social determinants: taking the social context of asthma seriously. Pediatrics. 2009;123 Suppl 3:S174–84.PubMedCentralPubMedGoogle Scholar
  109. 109.
    Cohen RT, Canino GJ, Bird HR, Celedon JC. Violence, abuse, and asthma in Puerto Rican children. Am J Respir Crit Care Med. 2008;178(5):453–9.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Chen W, Boutaoui N, Brehm JM, Han YY, Schmitz C, Cressley A, et al. ADCYAP1R1 and asthma in Puerto Rican children. Am J Respir Crit Care Med. 2013;187(6):584–8.PubMedCentralPubMedGoogle Scholar
  111. 111.
    Lange NE, Bunyavanich S, Silberg JL, Canino G, Rosner BA, Celedon JC. Parental psychosocial stress and asthma morbidity in Puerto Rican twins. J Allergy Clin Immunol. 2011;127(3):734–40. e1-7.PubMedCentralPubMedGoogle Scholar
  112. 112.
    Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518(7539):317–30.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Pediatrics, Division of Allergy, Immunology, and RheumatologyStanford University School of MedicineStanfordUSA

Personalised recommendations