Controlled Allergen Challenge Facilities and Their Unique Contributions to Allergic Rhinitis Research

  • Michelle L. North
  • Mena Soliman
  • Terry Walker
  • Lisa M. Steacy
  • Anne K. Ellis
Rhinitis (JJ Oppenheimer and J Corren (Section Editors)
Part of the following topical collections:
  1. Topical Collection on Rhinitis


The aim of this study is to review advances in basic and clinical allergic rhinitis (AR) research over the past decade that have been conducted using controlled allergen challenge facility (CACF) models of allergen challenge. Databases, including PubMed, Medline, and Web of Science were searched for articles employing an ambient pollen exposure in a controlled facility to study AR, published between 2004 and the present date, using the terms as follows: CACF, Environmental Exposure Unit (EEU), Vienna Challenge Chamber (VCC), Fraunhofer Institute Environmental Challenge Chamber, Atlanta Allergen Exposure Unit, Biogenics Research Chamber, Allergen BioCube, Chiba and Osaka Environmental Challenge Chamber, exposure unit, challenge chamber, or environmental exposure chamber. Articles were then selected for relevance to the goals of the present review, including important contributions toward clinical and/or basic science allergy research. CACFs offer sensitive, specific, and reproducible methodology for allergen challenge. They have been employed since the 1980s and offer distinct advantages over traditional in-season multicentre trials when evaluating new treatments for AR. They have provided clinically applicable efficacy and pharmacologic information about important allergy medications, including antihistamines, decongestants, antileukotrienes, immunotherapies, and nasal steroids. CACF models have also contributed to basic science and novel/experimental therapy research. To date, no direct studies have been conducted comparing outcomes from one CACF to another. Over the past decade, CACF models have played an essential role in investigating the pathophysiology of AR and evaluating new therapies. The future opportunities for this model continue to expand.


Controlled allergen challenge facilities Allergic rhinitis Immunotherapy Nasal steroid Antihistamine Pollen 



Allergic rhinitis


Controlled allergen challenge facility


Chemoattractant receptor homologous molecule


Environmental exposure unit


Early phase responders


Sub-lingual immunotherapies


Total nasal symptom score


Transient receptor potential vanilloid 1


Vienna challenge chamber


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.•
    Bousquet J, Van Cauwenberge P, Khaltaev N. Allergic rhinitis and its impact on asthma. J Allergy Clin Immunol. 2001;108:S147–334. Seminal paper describing the symptoms and pathophysiology of allergic rhinitis and its impact on comorbid asthma.PubMedCrossRefGoogle Scholar
  2. 2.••
    Day JH, Horak F, Briscoe MP, Canonica GW, Fineman SM, Krug N, et al. The role of allergen challenge chambers in the evaluation of anti-allergic medication: an international consensus paper. Clin Exp Allergy Rev. 2006;6:31–59. A consensus paper on CACF models in allergic rhinitis research.CrossRefGoogle Scholar
  3. 3.••
    Horak F, Jager S. The Vienna challenge chamber (VCC)—a new method for allergen exposition tests. Wien Klin Wocheschr. 1987;99:509–10. Validation of the Vienna challenge chamber (VCC).Google Scholar
  4. 4.
    Pross HF, Day JH, Clark RH, Lees RE. Immunologic studies of subjects with asthma exposed to formaldehyde and urea-formaldehyde foam insulation (UFFI) off products. J Allergy Clin Immunol. 1987;79:797–810.PubMedCrossRefGoogle Scholar
  5. 5.
    Day JH, Lees RE, Clark RH, Pattee PL. Respiratory response to formaldehyde and off-gas of urea formaldehyde foam insulation. Can Med Assoc J. 1984;131:1061–5.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Ellis AK, North ML, Walker T, Steacy LM. Environmental exposure unit: a sensitive, specific, and reproducible methodology for allergen challenge. Ann Allergy Asthma Immunol. 2013;111:323–8.PubMedCrossRefGoogle Scholar
  7. 7.•
    Ronborg SM, Mosbech H, Johnsen CR, Poulsen LK. Exposure chamber for allergen challenge. The development and validation of a new concept. Allergy. 1996;51:82–8. Validation of an allergen exposure facility in Copenhagen, Denmark, for use with house-dust mite allergen.PubMedCrossRefGoogle Scholar
  8. 8.••
    Krug N, Hohlfeld JM, Larbig M, Buckendahl A, Badorrek P, Geldmacher H, et al. Validation of an environmental exposure unit for controlled human inhalation studies with grass pollen in patients with seasonal allergic rhinitis. Clin Exp Allergy. 2003;33:1667–74. Validation of the Fraunhofer Institute Environmental Challenge Chamber (ECC) in Hannover, Germany.PubMedCrossRefGoogle Scholar
  9. 9.
    Berkowitz RB, Woodworth GG, Lutz C, Weiler K, Weiler J, Moss M, et al. Onset of action, efficacy, and safety of fexofenadine 60 mg/pseudoephedrine 120 mg versus placebo in the Atlanta allergen exposure unit. Ann Allergy Asthma Immunol. 2002;89:38–45.PubMedCrossRefGoogle Scholar
  10. 10.
    Wilken JA, Berkowitz R, Kane R. Decrements in vigilance and cognitive functioning associated with ragweed-induced allergic rhinitis. Ann Allergy Asthma Immunol. 2002;89:372–80.PubMedCrossRefGoogle Scholar
  11. 11.
    Berkowitz RB, McCafferty F, Lutz C, Bazelmans D, Godfrey P, Meeves S, et al. Onset of action of fexofenadine hydrochloride 60 mg/pseudoephedrine hydrochloride 120 mg in subjects aged 12 years with moderate to severe seasonal allergic rhinitis: a pooled analysis of two single-dose, randomized, double-blind, placebo-controlled allergen exposure unit studies. Clin Ther. 2006;28:1658–69.PubMedCrossRefGoogle Scholar
  12. 12.
    Patel P, D’Andrea C, Sacks HJ. Onset of action of azelastine nasal spray compared with mometasone nasal spray and placebo in subjects with seasonal allergic rhinitis evaluated in an environmental exposure chamber. Am J Rhinol. 2007;21:499–503.PubMedCrossRefGoogle Scholar
  13. 13.
    Patel P, Salapatek AM. Pollinex Quattro: a novel and well-tolerated, ultra short-course allergy vaccine. Expert Rev Vaccines. 2006;5:617–29.PubMedCrossRefGoogle Scholar
  14. 14.
    Ramirez DA JR, Andrews CP. Uniperus asheii (mountain cedar) pollen utilized as an antigen in the biogenics chamber: comparison of natural and controlled exposures. J Allergy Clin Immunol. 2011;127:AB19.CrossRefGoogle Scholar
  15. 15.
    Jacobs RL, Ramirez DA, Andrews CP. Validation of the biogenics research chamber for Juniperus ashei (mountain cedar) pollen. Ann Allergy Asthma Immunol. 2011;107:133–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Crampton H.J., Gomes, P. A Pilot Study Evaluating the Signs and Symptoms of Seasonal Allergic Rhinitis and Conjunctivitis Following Allergen Exposure in the Allergen BioCube. 2009; identifier: NCT00985075.Google Scholar
  17. 17.•
    Hamasaki S, Okamoto Y, Yonekura S, Okuma Y, Sakurai T, Iinuma T, et al. Characteristics of the Chiba environmental challenge chamber. Allergol Int. 2014;63:41–50. Validation of the Chiba environmental challenge chamber in Japan.PubMedCrossRefGoogle Scholar
  18. 18.
    Ito K, Terada T, Yuki A, Ichihara T, Hyo S, Kawata R, et al. Preliminary study of a challenge test to the patients with Japanese cedar pollinosis using an environmental exposure unit. Auris Nasus Larynx. 2010;37:694–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Yang WH, Yang J, Perrins R, Kelly S, Karsh J. Computer-aided design of an allergen challenge theatre. J Allergy Clin Immunol. 2014;133:AB187.CrossRefGoogle Scholar
  20. 20.
    Muradil M, Okamoto Y, Yonekura S, Chazono H, Hisamitsu M, Horiguchi S, et al. Reevaluation of pollen quantitation by an automatic pollen counter. Allergy Asthma Proc. 2010;31:422–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Chervinsky P, Philip G, Malice MP, Bardelas J, Nayak A, Marchal JL, et al. Montelukast for treating fall allergic rhinitis: effect of pollen exposure in 3 studies. Ann Allergy Asthma Immunol. 2004;92:367–73.PubMedCrossRefGoogle Scholar
  22. 22.
    Akerlund A, Andersson M, Leflein J, Lildholdt T, Mygind N. Clinical trial design, nasal allergen challenge models, and considerations of relevance to pediatrics, nasal polyposis, and different classes of medication. J Allergy Clin Immunol. 2005;115:S460–82.PubMedCrossRefGoogle Scholar
  23. 23.
    Day JH, Ellis AK, Rafeiro E, Ratz JD, Briscoe MP. Experimental models for the evaluation of treatment of allergic rhinitis. Ann Allergy Asthma Immunol. 2006;96:263–77. quiz 277–8, 315.PubMedCrossRefGoogle Scholar
  24. 24.
    U.S. Food and Drug Administration Center for Biologics Evaluation and Research: Allergenic Products Advisory Committee. Transcript, Capital Reporting Company 2011. Accessed 10 Dec 2014.
  25. 25.
    Bernstein JA. Correlation between a pollen challenge chamber and a natural allergen exposure study design for eliciting ocular and nasal symptoms: early evidence supporting a paradigm shift in drug investigation? J Allergy Clin Immunol. 2012;130:128–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Devillier P, Le Gall M, Horak F. The allergen challenge chamber: a valuable tool for optimizing the clinical development of pollen immunotherapy. Allergy. 2011;66:163–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Committee for Medicinal Products for Human Use (CHMP). Guideline on the Clinical Development of Products for Specific Immunotherapy for the Treatment of Allergic Diseases. Doc. Ref. CHMP/EWP/18504/2006. 2008. Accessed 10 Dec 2014.
  28. 28.
    Horak F, Stubner UP, Zieglmayer R, Harris AG. Effect of desloratadine versus placebo on nasal airflow and subjective measures of nasal obstruction in subjects with grass pollen-induced allergic rhinitis in an allergen-exposure unit. J Allergy Clin Immunol. 2002;109:956–61.PubMedCrossRefGoogle Scholar
  29. 29.
    Horak F, Stubner P, Zieglmeyer R, Harris AG. Comparison of the effects of desloratadine 5-mg daily and placebo on nasal airflow and seasonal allergic rhinitis symptoms induced by grass pollen exposure. Allergy. 2003;58:481–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Day JH, Briscoe M, Rafeiro E, Chapman D, Kramer B. Comparative onset of action and symptom relief with cetirizine, loratadine, or placebo in an environmental exposure unit in subjects with seasonal allergic rhinitis: confirmation of a test system. Ann Allergy Asthma Immunol. 2001;87:474–81.PubMedCrossRefGoogle Scholar
  31. 31.
    Day JH, Briscoe M, Widlitz MD. Cetirizine, loratadine, or placebo in subjects with seasonal allergic rhinitis: effects after controlled ragweed pollen challenge in an environmental exposure unit. J Allergy Clin Immunol. 1998;101:638–45.PubMedCrossRefGoogle Scholar
  32. 32.••
    Connell JT. Quantitative intranasal pollen challenges. 3. The priming effect in allergic rhinitis. J Allergy. 1969;43:33–44. Seminal work on the priming effect.PubMedCrossRefGoogle Scholar
  33. 33.
    Yuki A, Terada T, Ichihara T, Fujii K, Hyo S, Kawata R, et al. Evaluating the effects of testing period on pollinosis symptoms using an allergen challenge chamber. Allergol Int. 2011;60:533–9.PubMedCrossRefGoogle Scholar
  34. 34.•
    Ellis AK, Ratz JD, Day AG, Day JH. Factors that affect the allergic rhinitis response to ragweed allergen exposure. Ann Allergy Asthma Immunol. 2010;104:293–8. Important paper that demonstrated common individual participant factors that affect symptom response in CACF studies.PubMedCrossRefGoogle Scholar
  35. 35.
    Jacobs, R.L., Andrews, C.P., Ramirez, D.A., Rather, C.G., Harper, N., Jimenez, F, et al. Symptom dynamics during repeated serial allergen challenge chamber exposures to house dust mite. J Allergy Clin Immunol. 2014. in press.Google Scholar
  36. 36.
    Ellis AK, Rafeiro E, Day JH. Quality of life indices may be predictive of placebo and medication response to treatment for allergic rhinitis. Ann Allergy Asthma Immunol. 2001;86:393–6.PubMedCrossRefGoogle Scholar
  37. 37.•
    Ellis AK, Day JH, Lundie MJ. Impact on quality of life during an allergen challenge research trial. Ann Allergy Asthma Immunol. 1999;83:33–9. Work that demonstrated quality of life effects that result from participation in CACF trials.PubMedCrossRefGoogle Scholar
  38. 38.••
    Badorrek P, Dick M, Hecker H, Schaumann F, Sousa AR, Murdoch R, et al. Anti-allergic drug testing in an environmental challenge chamber is suitable both in and out of the relevant pollen season. Ann Allergy Asthma Immunol. 2011;106:336–41. Important paper that demonstrated CACF studies may be conducted both in and out of season.PubMedCrossRefGoogle Scholar
  39. 39.
    Hohlfeld JM, Holland-Letz T, Larbig M, Lavae-Mokhtari M, Wierenga E, Kapsenberg M, et al. Diagnostic value of outcome measures following allergen exposure in an environmental challenge chamber compared with natural conditions. Clin Exp Allergy. 2010;40:998–1006.PubMedCrossRefGoogle Scholar
  40. 40.•
    Jacobs RL, Harper N, He W, Andrews CP, Rather CG, Ramirez DA, et al. Responses to ragweed pollen in a pollen challenge chamber versus seasonal exposure identify allergic rhinoconjunctivitis endotypes. J Allergy Clin Immunol. 2012;130:122–7 e8. Demonstration of concordance between symptoms generated in a CACF model compared to the natural season.PubMedCrossRefGoogle Scholar
  41. 41.
    Jacobs RL, Harper N, He W, Andrews CP, Rather CG, Ramirez DA, et al. Effect of confounding cofactors on responses to pollens during natural season versus pollen challenge chamber exposure. J Allergy Clin Immunol. 2014;133:1340–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Soliman, M., Ellis, A.K. Phenotyping Allergic Rhinitis Responses using the Environmental Exposure Unit (EEU). Ann Allergy Asthma Immunol. 2015. in press.Google Scholar
  43. 43.
    Smit MJ, Timmerman H, Alewijnse AE, Leurs R. From histamine H2 receptor regulation to reclassification of H2 antagonists; inverse agonism as the basis for H2 receptor upregulation. Receptors Channels. 1998;5:99–102.PubMedGoogle Scholar
  44. 44.
    Bakker RA, Wieland K, Timmerman H, Leurs R. Constitutive activity of the histamine H(1) receptor reveals inverse agonism of histamine H(1) receptor antagonists. Eur J Pharmacol. 2000;387:R5–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Wu RL, Anthes JC, Kreutner W, Harris AG, West Jr RE. Desloratadine inhibits constitutive and histamine-stimulated nuclear factor-kappaB activity consistent with inverse agonism at the histamine H1 receptor. Int Arch Allergy Immunol. 2004;135:313–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Monczor F, Fernandez N, Fitzsimons CP, Shayo C, Davio C. Antihistaminergics and inverse agonism: potential therapeutic applications. Eur J Pharmacol. 2013;715:26–32.PubMedCrossRefGoogle Scholar
  47. 47.•
    Day JH, Briscoe MP, Clark RH, Ellis AK, Gervais P. Onset of action and efficacy of terfenadine, astemizole, cetirizine, and loratadine for the relief of symptoms of allergic rhinitis. Ann Allergy Asthma Immunol. 1997;79:163–72. Important investigation of second-generation antihistamines using a CACF model.PubMedCrossRefGoogle Scholar
  48. 48.
    Stubner P, Zieglmayer R, Horak F. A direct comparison of the efficacy of antihistamines in SAR and PAR: randomised, placebo-controlled studies with levocetirizine and loratadine using an environmental exposure unit - the Vienna Challenge Chamber (VCC). Curr Med Res Opin. 2004;20:891–902.PubMedCrossRefGoogle Scholar
  49. 49.
    Day JH, Briscoe MP, Rafeiro E, Ratz JD. Comparative clinical efficacy, onset and duration of action of levocetirizine and desloratadine for symptoms of seasonal allergic rhinitis in subjects evaluated in the Environmental Exposure Unit (EEU). Int J Clin Pract. 2004;58:109–18.PubMedCrossRefGoogle Scholar
  50. 50.
    Horak F, Zieglmayer PU, Zieglmayer R, Kavina A, Lemell P. Levocetirizine has a longer duration of action on improving total nasal symptoms score than fexofenadine after single administration. Br J Clin Pharmacol. 2005;60:24–31.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Day JH, Briscoe MP, Welsh A, Smith JN, Clark A, Ellis AK, et al. Onset of action, efficacy, and safety of a single dose of fexofenadine hydrochloride for ragweed allergy using an environmental exposure unit. Ann Allergy Asthma Immunol. 1997;79:533–40.PubMedCrossRefGoogle Scholar
  52. 52.
    Day JH, Briscoe MP, Rafeiro E, Ratz JD, Ellis AK, Frankish CW, et al. Comparative efficacy of cetirizine and fexofenadine for seasonal allergic rhinitis, 5–12 hours postdose, in the environmental exposure unit. Allergy Asthma Proc. 2005;26:275–82.PubMedGoogle Scholar
  53. 53.•
    Day JH, Briscoe MP, Rafeiro E, Hewlett Jr D, Chapman D, Kramer B. Randomized double-blind comparison of cetirizine and fexofenadine after pollen challenge in the Environmental Exposure Unit: duration of effect in subjects with seasonal allergic rhinitis. Allergy Asthma Proc. 2004;25:59–68. Demonstration of a longer duration of action for cetirizine compared to fexofenadine.PubMedGoogle Scholar
  54. 54.•
    Horak F, Zieglmayer P, Zieglmayer R, Lemell P. The effects of bilastine compared with cetirizine, fexofenadine, and placebo on allergen-induced nasal and ocular symptoms in patients exposed to aeroallergen in the Vienna Challenge Chamber. Inflamm Res. 2010;59:391–8. Demonstration of longer durations of action for bilastine and cetirizine compared to fexofenadine.PubMedCrossRefGoogle Scholar
  55. 55.•
    Yonekura S, Okamoto Y, Yamamoto H, Sakurai T, Iinuma T, Sakurai D, et al. Randomized double-blind study of prophylactic treatment with an antihistamine for seasonal allergic rhinitis. Int Arch Allergy Immunol. 2013;162:71–8. Demonstration that prophylactic treatment with antihistamine is not superior to single treatment.PubMedCrossRefGoogle Scholar
  56. 56.
    Stuebner P, Horak F, Zieglmayer R, Arnaiz E, Leuratti C, Perez I, et al. Effects of rupatadine vs placebo on allergen-induced symptoms in patients exposed to aeroallergens in the Vienna Challenge Chamber. Ann Allergy Asthma Immunol. 2006;96:37–44.PubMedCrossRefGoogle Scholar
  57. 57.
    Ellis AK, Zhu Y, Steacy LM, Walker T, Day JH. A four-way, double-blind, randomized, placebo controlled study to determine the efficacy and speed of azelastine nasal spray, versus loratadine, and cetirizine in adult subjects with allergen-induced seasonal allergic rhinitis. Allergy Asthma Clin Immunol. 2013;9:16.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Patel P, Roland PS, Marple BF, Benninger PJ, Margalias H, Brubaker M, et al. An assessment of the onset and duration of action of olopatadine nasal spray. Otolaryngol Head Neck Surg. 2007;137:918–24.PubMedCrossRefGoogle Scholar
  59. 59.
    Horak F, Zieglmayer UP, Zieglmayer R, Kavina A, Marschall K, Munzel U, et al. Azelastine nasal spray and desloratadine tablets in pollen-induced seasonal allergic rhinitis: a pharmacodynamic study of onset of action and efficacy. Curr Med Res Opin. 2006;22:151–7.PubMedCrossRefGoogle Scholar
  60. 60.••
    Day JH, Buckeridge DL, Clark RH, Briscoe MP, Phillips R. A randomized, double-blind, placebo-controlled, controlled antigen delivery study of the onset of action of aerosolized triamcinolone acetonide nasal spray in subjects with ragweed-induced allergic rhinitis. J Allergy Clin Immunol. 1996;97:1050–7. The first evaluation of a nasal corticosteroid in a CACF model that revealed an earlier onset of action than was anticipated.PubMedCrossRefGoogle Scholar
  61. 61.
    Day JH, Briscoe MP, Rafeiro E, Ellis AK, Pettersson E, Akerlund A. Onset of action of intranasal budesonide (Rhinocort aqua) in seasonal allergic rhinitis studied in a controlled exposure model. J Allergy Clin Immunol. 2000;105:489–94.PubMedCrossRefGoogle Scholar
  62. 62.
    Couroux P, Kunjibettu S, Hall N, Wingertzahn MA. Onset of action of ciclesonide once daily in the treatment of seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 2009;102:62–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Patel P, Patel D, Kunjibettu S, Hall N, Wingertzahn MA. Onset of action of ciclesonide once daily in the treatment of seasonal allergic rhinitis. Ear Nose Throat J. 2008;87:340–53.PubMedGoogle Scholar
  64. 64.
    Zieglmayer P, Zieglmayer R, Bareille P, Rousell V, Salmon E, Horak F. Fluticasone furoate versus placebo in symptoms of grass-pollen allergic rhinitis induced by exposure in the Vienna challenge chamber. Curr Med Res Opin. 2008;24:1833–40.PubMedCrossRefGoogle Scholar
  65. 65.
    Salapatek AM, Patel P, Gopalan G, Varghese ST. Mometasone furoate nasal spray provides early, continuing relief of nasal congestion and improves nasal patency in allergic patients. Am J Rhinol Allergy. 2010;24:433–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Patel D, Garadi R, Brubaker M, Conroy JP, Kaji Y, Crenshaw K, et al. Onset and duration of action of nasal sprays in seasonal allergic rhinitis patients: olopatadine hydrochloride versus mometasone furoate monohydrate. Allergy Asthma Proc. 2007;28:592–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Yamamoto H, Yonekura S, Sakurai D, Katada K, Inamine A, Hanazawa T, et al. Comparison of nasal steroid with antihistamine in prophylactic treatment against pollinosis using an environmental challenge chamber. Allergy Asthma Proc. 2012;33:397–403.PubMedCrossRefGoogle Scholar
  68. 68.
    Salapatek AM, Lee J, Patel D, D’Angelo P, Liu J, Zimmerer Jr RO, et al. Solubilized nasal steroid (CDX-947) when combined in the same solution nasal spray with an antihistamine (CDX-313) provides improved, fast-acting symptom relief in patients with allergic rhinitis. Allergy Asthma Proc. 2011;32:221–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Simons FE. Comparative pharmacology of H1 antihistamines: clinical relevance. Am J Med. 2002;113(Suppl 9A):38S–46.PubMedCrossRefGoogle Scholar
  70. 70.
    del Cuvillo A, Mullol J, Bartra J, Davila I, Jauregui I, Montoro J, et al. Comparative pharmacology of the H1 antihistamines. J Investig Allergol Clin Immunol. 2006;16 Suppl 1:3–12.PubMedGoogle Scholar
  71. 71.••
    Nathan RA, Meltzer EO, Derebery J, Campbell UB, Stang PE, Corrao MA, et al. The prevalence of nasal symptoms attributed to allergies in the United States: findings from the burden of rhinitis in an America survey. Allergy Asthma Proc. 2008;29:600–8. Important work on the prevalence and impact of AR in the USA.PubMedCrossRefGoogle Scholar
  72. 72.
    Djukanovic R, Wilson SJ, Howarth PH. Pathology of rhinitis and bronchial asthma. Clin Exp Allergy. 1996;26 Suppl 3:44–51.PubMedCrossRefGoogle Scholar
  73. 73.
    Chervinsky P, Nayak A, Rooklin A, Danzig M. Efficacy and safety of desloratadine/pseudoephedrine tablet, 2.5/120 mg two times a day, versus individual components in the treatment of patients with seasonal allergic rhinitis. Allergy Asthma Proc. 2005;26:391–6.PubMedGoogle Scholar
  74. 74.
    Moinuddin R, de Tineo M, Maleckar B, Naclerio RM, Baroody FM. Comparison of the combinations of fexofenadine-pseudoephedrine and loratadine-montelukast in the treatment of seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 2004;92:73–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Zieglmayer UP, Horak F, Toth J, Marks B, Berger UE, Burtin B. Efficacy and safety of an oral formulation of cetirizine and prolonged-release pseudoephedrine versus budesonide nasal spray in the management of nasal congestion in allergic rhinitis. Treat Respir Med. 2005;4:283–7.PubMedCrossRefGoogle Scholar
  76. 76.•
    Horak F, Zieglmayer P, Zieglmayer R, Lemell P, Yao R, Staudinger H, et al. A placebo-controlled study of the nasal decongestant effect of phenylephrine and pseudoephedrine in the Vienna Challenge Chamber. Ann Allergy Asthma Immunol. 2009;102:116–20. Important work on the relative efficacy of pseudoephedrine and phenylephrine.PubMedCrossRefGoogle Scholar
  77. 77.
    Day JH, Briscoe MP, Ratz JD, Danzig M, Yao R. Efficacy of loratadine-montelukast on nasal congestion in patients with seasonal allergic rhinitis in an environmental exposure unit. Ann Allergy Asthma Immunol. 2009;102:328–38.PubMedCrossRefGoogle Scholar
  78. 78.•
    Badorrek P, Dick M, Schauerte A, Hecker H, Murdoch R, Luettig B, et al. A combination of cetirizine and pseudoephedrine has therapeutic benefits when compared to single drug treatment in allergic rhinitis. Int J Clin Pharmacol Ther. 2009;47:71–7. Important comparison of the efficacy of antihistamine vs. pseudoephedrine alone and in combination.PubMedCrossRefGoogle Scholar
  79. 79.
    Empey DW, Young GA, Letley E, John GC, Smith P, McDonnell KA, et al. Dose–response study of the nasal decongestant and cardiovascular effects of pseudoephedrine. Br J Clin Pharmacol. 1980;9:351–8.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    North ML, Walker T, Steacy LM, Hobsbawn BG, Allan RJ, Hackman F, et al. Double blind randomized crossover trial of PF-03654764 + fexofenadine in the environmental exposure unit (EEU). Allergy Asthma Clin Immunol. 2014;10:A68.PubMedCentralCrossRefGoogle Scholar
  81. 81.
    Daley-Yates P, Ambery C, Sweeney L, Watson J, Oliver A, McQuade B. The efficacy and tolerability of two novel H(1)/H(3) receptor antagonists in seasonal allergic rhinitis. Int Arch Allergy Immunol. 2012;158:84–98.PubMedCrossRefGoogle Scholar
  82. 82.
    Barchuk WT, Salapatek AM, Ge T, D’Angelo P, Liu X. A proof-of-concept study of the effect of a novel H3-receptor antagonist in allergen-induced nasal congestion. J Allergy Clin Immunol. 2013;132:838–46. e1-6.PubMedCrossRefGoogle Scholar
  83. 83.
    Wager TT, Pettersen BA, Schmidt AW, Spracklin DK, Mente S, Butler TW, et al. Discovery of two clinical histamine H(3) receptor antagonists: trans-N-ethyl-3-fluoro-3-[3-fluoro-4-(pyrrolidinylmethyl)phenyl]cyclobutanecarbox amide (PF-03654746) and trans-3-fluoro-3-[3-fluoro-4-(pyrrolidin-1-ylmethyl)phenyl]-N-(2-methylpropyl)cyclobutanecarboxamide (PF-03654764). J Med Chem. 2011;54:7602–20.PubMedCrossRefGoogle Scholar
  84. 84.
    Weisler RH, Pandina GJ, Daly EJ, Cooper K, Gassmann-Mayer C. Randomized clinical study of a histamine H3 receptor antagonist for the treatment of adults with attention-deficit hyperactivity disorder. CNS Drugs. 2012;26:421–34.PubMedCrossRefGoogle Scholar
  85. 85.
    Small P, Kim H. Allergic rhinitis. Allergy Asthma Clin Immunol. 2011;7 Suppl 1:S3.PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.•
    Day JH, Briscoe MP, Ratz JD. Efficacy of levocetirizine compared with montelukast in subjects with ragweed-induced seasonal allergic rhinitis in the Environmental Exposure Unit. Allergy Asthma Proc. 2008;29:304–12. Comparison of the antileukotriene montelukast to the antihistamine levocetirizine.PubMedCrossRefGoogle Scholar
  87. 87.
    Patel P, Patel D. Efficacy comparison of levocetirizine vs montelukast in ragweed sensitized patients. Ann Allergy Asthma Immunol. 2008;101:287–94.PubMedCrossRefGoogle Scholar
  88. 88.
    Day JH, Briscoe MP, Ratz JD, Ellis AK, Yao R, Danzig M. Onset of action of loratadine/montelukast in seasonal allergic rhinitis subjects exposed to ragweed pollen in the environmental exposure unit. Allergy Asthma Proc. 2009;30:270–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Horak F, Zieglmayer P, Zieglmayer R, Lemell P. Onset of action of loratadine/montelukast in seasonal allergic rhinitis patients exposed to grass pollen. Arzneimittelforschung. 2010;60:249–55.PubMedGoogle Scholar
  90. 90.••
    Donovan JP, Buckeridge DL, Briscoe MP, Clark RH, Day JH. Efficacy of immunotherapy to ragweed antigen tested by controlled antigen exposure. Ann Allergy Asthma Immunol. 1996;77:74–80. Important evaluation of the efficacy of standard immunotherapy.PubMedCrossRefGoogle Scholar
  91. 91.
    Ellis AK. Environmental exposure units for specific immunotherapy trials. Arb Paul Ehrlich Inst Bundesinstitut Impfstoffe Biomed Arzneim Langen Hess. 2013;97:91–4.PubMedGoogle Scholar
  92. 92.
    Patel P, Holdich T, Fischer von Weikersthal-Drachenberg KJ, Huber B. Efficacy of a short course of specific immunotherapy in patients with allergic rhinoconjunctivitis to ragweed pollen. J Allergy Clin Immunol. 2014;133:121–9 e1-2.PubMedCrossRefGoogle Scholar
  93. 93.
    Patel D, Couroux P, Hickey P, Salapatek AM, Laidler P, Larche M, et al. el d 1-derived peptide antigen desensitization shows a persistent treatment effect 1 year after the start of dosing: a randomized, placebo-controlled study. J Allergy Clin Immunol. 2013;131:103–9 e1-7.PubMedGoogle Scholar
  94. 94.
    Horak F, Zieglmayer P, Zieglmayer R, Lemell P, Devillier P, Montagut A, et al. Early onset of action of a 5-grass-pollen 300-IR sublingual immunotherapy tablet evaluated in an allergen challenge chamber. J Allergy Clin Immunol. 2009;124:471–7, 477 e1.PubMedCrossRefGoogle Scholar
  95. 95.
    Jordakieva G, Wallmann J, Schmutz R, Lemell P, Wegmann M, Nittke T, et al. Peripheral erythrocytes decrease upon specific respiratory challenge with grass pollen allergen in sensitized mice and in human subjects. PLoS One. 2014;9:e86701.PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Horak F, Zieglmayer P, Zieglmayer R, Lemell P, Collins LP, Hunter MG, et al. The CRTH2 antagonist OC000459 reduces nasal and ocular symptoms in allergic subjects exposed to grass pollen, a randomised, placebo-controlled, double-blind trial. Allergy. 2012;67:1572–9.PubMedGoogle Scholar
  97. 97.
    Krug N, Gupta A, Badorrek P, Koenen R, Mueller M, Pivovarova A, et al. Efficacy of the oral chemoattractant receptor homologous molecule on TH2 cells antagonist BI 671800 in patients with seasonal allergic rhinitis. J Allergy Clin Immunol. 2014;133:414–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Bareille P, Murdoch RD, Denyer J, Bentley J, Smart K, Yarnall K, et al. The effects of a TRPV1 antagonist, SB-705498, in the treatment of seasonal allergic rhinitis. Int J Clin Pharmacol Ther. 2013;51:576–84.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Michelle L. North
    • 1
    • 2
  • Mena Soliman
    • 1
    • 2
  • Terry Walker
    • 2
  • Lisa M. Steacy
    • 2
  • Anne K. Ellis
    • 1
    • 2
  1. 1.Division of Allergy & Immunology, Department of Medicine, Department of Biomedical & Molecular SciencesQueen’s UniversityKingstonCanada
  2. 2.Allergy Research UnitKingston General HospitalKingstonCanada

Personalised recommendations