MicroRNAs in Allergy and Asthma

  • Ana RebaneEmail author
  • Cezmi A. Akdis
Immune Deficiency and Dysregulation (DP Huston, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Immune Deficiency and Dysregulation


microRNAs (miRNAs) are short, single-stranded RNA molecules that function together with the partner proteins and cause degradation of target mRNAs or inhibit their translation. A particular miRNA can have hundreds of targets; therefore, miRNAs cumulatively influence the expression of a large proportion of genes. The functions of miRNAs in human diseases have been studied since their discovery in mammalian cells approximately 12 years ago. However, the role of miRNAs in allergic disease has only very recently begun to be uncovered. The purpose of this review is to provide an overview of the functions of miRNAs involved in the development of allergic diseases. We describe here the functions of miRNAs that regulate Th2 polarization and influence general inflammatory and tissue responses. In addition, we will highlight findings about the functions of extracellular miRNAs as possible noninvasive biomarkers of diseases with heterogeneous phenotypes and complex mechanisms and briefly discuss advances in the development of miRNA-based therapeutics.


Allergy Asthma Atopic Non-coding RNA T cells Dendritic cells Epithelial cells microRNA Extracellular miRNA 



This work was supported by the Swiss National Science Foundation grant 32-112306, the Christine Kühne-Center for Allergy Research and Education, Davos Switzerland (CK-CARE), Swiss-Polish contribution, European Regional Fund with Archimedes Foundation, EU structural assistance grant SARMP12219T and personal research grant PUT214 from the Estonian Research Council.

Compliance with Ethics Guidelines

Conflict of Interest

Ana Rebane and Cezmi A. Akdis declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as:• Of importance

  1. 1.
    Makeyev EV, Maniatis T. Multilevel regulation of gene expression by microRNAs. Science. 2008;319(5871):1789–90.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Djuranovic S, Nahvi A, Green R. A parsimonious model for gene regulation by miRNAs. Science. 2011;331(6017):550–3.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Agache I et al. Untangling asthma phenotypes and endotypes. Allergy. 2012;67(7):835–46.PubMedCrossRefGoogle Scholar
  4. 4.
    Lotvall J et al. Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J Allergy Clin Immunol. 2011;127(2):355–60.PubMedCrossRefGoogle Scholar
  5. 5.
    Rebane A, Akdis CA. MicroRNAs: Essential players in the regulation of inflammation. J Allergy Clin Immunol. 2013;132(1):15–26.PubMedCrossRefGoogle Scholar
  6. 6.
    Lu TX, Rothenberg ME. Diagnostic, functional, and therapeutic roles of microRNA in allergic diseases. J Allergy Clin Immunol. 2013;132(1):3–13. quiz 14.PubMedCrossRefGoogle Scholar
  7. 7.
    Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11(9):597–610.PubMedGoogle Scholar
  8. 8.
    Winter J et al. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;11(3):228–34.PubMedCrossRefGoogle Scholar
  9. 9.
    Gu S et al. Biological basis for restriction of microRNA targets to the 3’ untranslated region in mammalian mRNAs. Nat Struct Mol Biol. 2009;16(2):144–50.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell. 2010;140(6):771–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Renz H, Brandtzaeg P, Hornef M. The impact of perinatal immune development on mucosal homeostasis and chronic inflammation. Nat Rev Immunol. 2012;12(1):9–23.Google Scholar
  12. 12.
    Akdis CA. Therapies for allergic inflammation: refining strategies to induce tolerance. Nat Med. 2012;18(5):736–49.PubMedCrossRefGoogle Scholar
  13. 13.
    Kumarswamy R, Volkmann I, Thum T. Regulation and function of miRNA-21 in health and disease. RNA Biol. 2011;8(5):706–13.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Iliopoulos D et al. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell. 2010;39(4):493–506.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Sheedy FJ et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol. 2010;11(2):141–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Taganov KD et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006;103(33):12481–6.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Etzrodt M et al. Regulation of monocyte functional heterogeneity by miR-146a and Relb. Cell Rep. 2012;1(4):317–24.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Crone SG et al. microRNA-146a inhibits G protein-coupled receptor-mediated activation of NF-kappaB by targeting CARD10 and COPS8 in gastric cancer. Mol Cancer. 2012;11:71.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Zhao JL et al. NF-{kappa}B dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc Natl Acad Sci U S A. 2011;108(22):9184–9.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Boldin MP et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med. 2011;208(6):1189–201.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Lu LF et al. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell. 2010;142(6):914–29.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Guo Q et al. Forced miR-146a expression causes autoimmune lymphoproliferative syndrome in mice via downregulation of Fas in germinal center B cells. Blood. 2013;121(24):4875–83.PubMedCrossRefGoogle Scholar
  23. 23.
    Wang P et al. Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol. 2010;185(10):6226–33.PubMedCrossRefGoogle Scholar
  24. 24.
    O’Connell RM et al. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci U S A. 2009;106(17):7113–8.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Nazari-Jahantigh M et al. MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J Clin Invest. 2012;122(11):4190–202.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Rodriguez A et al. Requirement of bic/microRNA-155 for normal immune function. Science. 2007;316(5824):608–11.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    O’Connell RM et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity. 2010;33(4):607–19.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Boldin MP, Baltimore D. MicroRNAs, new effectors and regulators of NF-kappaB. Immunol Rev. 2012;246(1):205–20.PubMedCrossRefGoogle Scholar
  29. 29.
    Baumjohann D, Ansel KM. MicroRNA-mediated regulation of T helper cell differentiation and plasticity. Nat Rev Immunol. 2013;13(9):666–78.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    de Yebenes VG, Bartolome-Izquierdo N, Ramiro AR. Regulation of B-cell development and function by microRNAs. Immunol Rev. 2013;253(1):25–39.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Feng MJ et al. MicroRNA-181a, -146a and -146b in spleen CD4+ T lymphocytes play proinflammatory roles in a murine model of asthma. Int Immunopharmacol. 2012;13(3):347–53.PubMedCrossRefGoogle Scholar
  32. 32.•
    Malmhall, C., et al., MicroRNA-155 is essential for T2-mediated allergen-induced eosinophilic inflammation in the lung. J Allergy Clin Immunol, 2013. This paper demonstrates reduced Th2 type inflammation in OVA-induced mouse model of asthma in miR-155-deficient mice.Google Scholar
  33. 33.
    Mattes J et al. Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc Natl Acad Sci U S A. 2009;106(44):18704–9.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Collison A et al. Altered expression of microRNA in the airway wall in chronic asthma: miR-126 as a potential therapeutic target. BMC Pulm Med. 2011;11:29.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Collison A et al. Inhibition of house dust mite-induced allergic airways disease by antagonism of microRNA-145 is comparable to glucocorticoid treatment. J Allergy Clin Immunol. 2011;128(1):160–167 e4.PubMedCrossRefGoogle Scholar
  36. 36.
    Sharma A et al. Antagonism of mmu-mir-106a attenuates asthma features in allergic murine model. J Appl Physiol. 2012;113(3):459–64.PubMedCrossRefGoogle Scholar
  37. 37.
    Qin HB et al. Inhibition of miRNA-221 Suppresses the Airway Inflammation in Asthma. Inflammation. 2012;35(4):1595–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Montagner S et al. The role of miRNAs in mast cells and other innate immune cells. Immunol Rev. 2013;253(1):12–24.PubMedCrossRefGoogle Scholar
  39. 39.
    Mayoral RJ et al. MicroRNA-221-222 regulate the cell cycle in mast cells. J Immunol. 2009;182(1):433–45.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Akdis M, et al. Interleukins, from 1 to 37, and interferon-gamma: receptors, functions, and roles in diseases. J Allergy Clin Immunol. 2011;127(3):701-21.e1-70.Google Scholar
  41. 41.
    Lu TX, Munitz A, Rothenberg ME. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol. 2009;182(8):4994–5002.PubMedCrossRefGoogle Scholar
  42. 42.
    Lu TX et al. MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity. J Immunol. 2011;187(6):3362–73.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Case SR et al. MicroRNA-21 inhibits toll-like receptor 2 agonist-induced lung inflammation in mice. Exp Lung Res. 2011;37(8):500–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Chen RF et al. MicroRNA-21 expression in neonatal blood associated with antenatal immunoglobulin E production and development of allergic rhinitis. Clin Exp Allergy. 2010;40(10):1482–90.PubMedCrossRefGoogle Scholar
  45. 45.•
    Lu, T.X., et al., MicroRNA signature in patients with eosinophilic esophagitis, reversibility with glucocorticoids, and assessment as disease biomarkers. J Allergy Clin Immunol. 2012;129(4):1064-75 e9. This study demonstrates the differential expression of miR-146a, miR-146b and miR-223 esophageal tissue and in plasma from EoE patients, which suggests that extracellular miRNAs could be used as potential biomarkers of allergic diseases.Google Scholar
  46. 46.
    Lu TX et al. MiR-375 is downregulated in epithelial cells after IL-13 stimulation and regulates an IL-13-induced epithelial transcriptome. Mucosal Immunol. 2012;5(4):388–96.PubMedCrossRefGoogle Scholar
  47. 47.
    Vennegaard MT et al. Allergic contact dermatitis induces upregulation of identical microRNAs in humans and mice. Contact Dermatitis. 2012;67(5):298–305.PubMedCrossRefGoogle Scholar
  48. 48.
    Kumar, M., et al., Let-7 microRNA-mediated regulation of IL-13 and allergic airway inflammation. J Allergy Clin Immunol. 2011.Google Scholar
  49. 49.
    Polikepahad S et al. Proinflammatory role for let-7 microRNAS in experimental asthma. J Biol Chem. 2010;285(39):30139–49.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Martinez-Nunez RT, Louafi F, Sanchez-Elsner T. The interleukin 13 (IL-13) pathway in human macrophages is modulated by microRNA-155 via direct targeting of interleukin 13 receptor alpha1 (IL13Ralpha1). J Biol Chem. 2011;286(3):1786–94.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.•
    Biton, M., et al., Epithelial microRNAs regulate gut mucosal immunity via epithelium-T cell crosstalk. Nat Immunol. 2011;12(3):239-46. This study demonstrates that miR-375 promotes the expression of TSLP and the differentiation of Th2 cells in gut mucosal epithelial cells. Google Scholar
  52. 52.
    Bleck B et al. MicroRNA-375 regulation of thymic stromal lymphopoietin by diesel exhaust particles and ambient particulate matter in human bronchial epithelial cells. J Immunol. 2013;190(7):3757–63.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Rossato M et al. IL-10-induced microRNA-187 negatively regulates TNF-alpha, IL-6, and IL-12p40 production in TLR4-stimulated monocytes. Proc Natl Acad Sci U S A. 2012;109(45):E3101–10.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Trotta R et al. miR-155 regulates IFN-gamma production in natural killer cells. Blood. 2012;119(15):3478–85.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Trotta R et al. Overexpression of miR-155 causes expansion, arrest in terminal differentiation and functional activation of mouse natural killer cells. Blood. 2013;121(16):3126–34.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Williams AE et al. MicroRNA expression profiling in mild asthmatic human airways and effect of corticosteroid therapy. PLoS One. 2009;4(6):e5889.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Jardim MJ et al. Distinct microRNA expression in human airway cells of asthmatic donors identifies a novel asthma-associated gene. Am J Respir Cell Mol Biol. 2012;47(4):536–42.PubMedCrossRefGoogle Scholar
  58. 58.
    Perry MM et al. Rapid changes in microRNA-146a expression negatively regulate the IL-1beta-induced inflammatory response in human lung alveolar epithelial cells. J Immunol. 2008;180(8):5689–98.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Liu X et al. MicroRNA-146a modulates human bronchial epithelial cell survival in response to the cytokine-induced apoptosis. Biochem Biophys Res Commun. 2009;380(1):177–82.PubMedCrossRefGoogle Scholar
  60. 60.
    Takyar S et al. VEGF controls lung Th2 inflammation via the miR-1-Mpl (myeloproliferative leukemia virus oncogene)-P-selectin axis. J Exp Med. 2013;210(10):1993–2010.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Chiba Y, Misawa M. MicroRNAs and their therapeutic potential for human diseases: MiR-133a and bronchial smooth muscle hyperresponsiveness in asthma. J Pharmacol Sci. 2010;114(3):264–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Jude JA et al. miR-140-3p regulation of TNF-alpha-induced CD38 expression in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2012;303(5):L460–8.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Sonkoly E, et al. MiR-155 is overexpressed in patients with atopic dermatitis and modulates T-cell proliferative responses by targeting cytotoxic T lymphocyte-associated antigen 4. J Allergy Clin Immunol. 2010;126(3):581-9.e1-20.Google Scholar
  64. 64.
    Akdis M et al. Immune responses in healthy and allergic individuals are characterized by a fine balance between allergen-specific T regulatory 1 and T helper 2 cells. J Exp Med. 2004;199(11):1567–75.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Sonkoly E et al. MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS One. 2007;2(7):e610.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Xu N et al. MiR-125b, a microRNA downregulated in psoriasis, modulates keratinocyte proliferation by targeting FGFR2. J Invest Dermatol. 2011;131(7):1521–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Rebane A et al. Mechanisms of IFN-gamma-induced apoptosis of human skin keratinocytes in patients with atopic dermatitis. J Allergy Clin Immunol. 2012;129(5):1297–306.PubMedCrossRefGoogle Scholar
  68. 68.
    Zhang XH et al. Overexpression of miR-125b, a novel regulator of innate immunity, in eosinophilic chronic rhinosinusitis with nasal polyps. Am J Respir Crit Care Med. 2012;185(2):140–51.PubMedCrossRefGoogle Scholar
  69. 69.
    Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med. 2012;18(5):716–25.PubMedCrossRefGoogle Scholar
  70. 70.
    Mitchell PS et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–8.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Hanke M et al. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol. 2010;28(6):655–61.PubMedCrossRefGoogle Scholar
  72. 72.
    Park NJ et al. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res. 2009;15(17):5473–7.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Cortez MA et al. MicroRNAs in body fluids–the mix of hormones and biomarkers. Nat Rev Clin Oncol. 2011;8(8):467–77.PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Weiland M et al. Small RNAs have a large impact: Circulating microRNAs as biomarkers for human diseases. RNA Biol. 2012;9(6):850–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Roberts TC et al. Extracellular microRNAs are dynamic non-vesicular biomarkers of muscle turnover. Nucleic Acids Res. 2013;41(20):9500–13.PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Akbas F et al. Analysis of serum micro-RNAs as potential biomarker in chronic obstructive pulmonary disease. Exp Lung Res. 2012;38(6):286–94.PubMedCrossRefGoogle Scholar
  77. 77.
    Levanen B et al. Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. J Allergy Clin Immunol. 2013;131(3):894–903.PubMedCrossRefGoogle Scholar
  78. 78.
    Sinha A et al. Exosome-enclosed microRNAs in exhaled breath hold potential for biomarker discovery in patients with pulmonary diseases. J Allergy Clin Immunol. 2013;132(1):219–22.PubMedCrossRefGoogle Scholar
  79. 79.
    Redis RS et al. Cell-to-cell miRNA transfer: From body homeostasis to therapy. Pharmacol Ther. 2012;136(2):169–74.PubMedCrossRefGoogle Scholar
  80. 80.
    Vickers KC et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13(4):423–33.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Arroyo JD et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011;108(12):5003–8.PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Turchinovich A et al. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39(16):7223–33.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Li L et al. Argonaute 2 Complexes Selectively Protect the Circulating MicroRNAs in Cell-Secreted Microvesicles. PLoS One. 2012;7(10):e46957.PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.•
    Bryniarski, K., et al., Antigen-specific, antibody-coated, exosome-like nanovesicles deliver suppressor T-cell microRNA-150 to effector T cells to inhibit contact sensitivity. J Allergy Clin Immunol. 2013;132(1):170-81. This study demonstrates that the nanovesicles containing miR-150 are capable of entering into effector T cells and suppress ACD, and they promoted antigen-specific tolerance in mice. Google Scholar
  85. 85.
    Robinson, DS. The role of the T cell in asthma. J Allergy Clin Immunol. 2010;126(6):1081-91; quiz 1092-3.Google Scholar
  86. 86.
    Klunker S et al. A second step of chemotaxis after transendothelial migration: keratinocytes undergoing apoptosis release IFN-gamma-inducible protein 10, monokine induced by IFN-gamma, and IFN-gamma-inducible alpha-chemoattractant for T cell chemotaxis toward epidermis in atopic dermatitis. J Immunol. 2003;171(2):1078–84.PubMedCrossRefGoogle Scholar
  87. 87.
    Soyka MB et al. Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-gamma and IL-4. J Allergy Clin Immunol. 2012;130(5):1087–1096 e10.PubMedCrossRefGoogle Scholar
  88. 88.
    Akdis M, et al. TH17 and TH22 cells: a confusion of antimicrobial response with tissue inflammation versus protection. J Allergy Clin Immunol. 2012;129(6):1438-49; quiz1450-1.Google Scholar
  89. 89.
    Eyerich S et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest. 2009;119(12):3573–85.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Holtzman MJ. Asthma as a chronic disease of the innate and adaptive immune systems responding to viruses and allergens. J Clin Invest. 2012;122(8):2741–8.PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Salimi M et al. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med. 2013;210(13):2939–50.PubMedCrossRefGoogle Scholar
  92. 92.
    Deniz G, van de Veen W, Akdis M. Natural killer cells in patients with allergic diseases. J Allergy Clin Immunol. 2013;132(3):527–35.PubMedCrossRefGoogle Scholar
  93. 93.
    Nadif R et al. The role of eosinophils and basophils in allergic diseases considering genetic findings. Curr Opin Allergy Clin Immunol. 2013;13(5):507–13.PubMedCrossRefGoogle Scholar
  94. 94.
    Soyka MB, Holzmann D, Akdis CA. Regulatory cells in allergen-specific immunotherapy. Immunotherapy. 2012;4(4):389–96.PubMedCrossRefGoogle Scholar
  95. 95.
    Licona-Limon P et al. TH2, allergy and group 2 innate lymphoid cells. Nat Immunol. 2013;14(6):536–42.PubMedCrossRefGoogle Scholar
  96. 96.
    Akdis M, Akdis CA. Therapeutic manipulation of immune tolerance in allergic disease. Nat Rev Drug Discov. 2009;8(8):645–60.PubMedCrossRefGoogle Scholar
  97. 97.
    Kanasty RL et al. Action and reaction: the biological response to siRNA and its delivery vehicles. Mol Ther. 2012;20(3):513–24.PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Lanford RE et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 2010;327(5962):198–201.PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Bader AG. miR-34 - a microRNA replacement therapy is headed to the clinic. Front Genet. 2012;3:120.PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov. 2013;12(11):847–65.PubMedCrossRefGoogle Scholar
  101. 101.
    Tsitsiou E et al. Transcriptome analysis shows activation of circulating CD8+ T cells in patients with severe asthma. J Allergy Clin Immunol. 2012;129(1):95–103.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute of Biomedicine and Translational MedicineUniversity of TartuTartuEstonia
  2. 2.Swiss Institute of Allergy and Asthma Research (SIAF)University of ZürichDavosSwitzerland
  3. 3.Christine Kühne-Center for Allergy Research and Education (CK-CARE) DavosDavosSwitzerland

Personalised recommendations