Gene Mutations in Primary Ciliary Dyskinesia Related to Otitis Media

  • Manuel Mata
  • Lara Milian
  • Miguel Armengot
  • Carmen Carda
OTITIS (DP SKONER, SECTION EDITOR)
Part of the following topical collections:
  1. Topical Collection on Otitis

Abstract

Otitis media with effusion (OME) is the most common cause of conductive hearing loss in children and is strongly associated with primary ciliary dyskinesia (PCD). Approximately half of the children with PCD require otolaryngology care, posing a major problem in this population. Early diagnosis of PCD is critical in these patients to minimise the collateral damage related to OME. The current gold standard for PCD diagnosis requires determining ciliary structure defects by transmission electron microscopy (TEM) or clearly documenting ciliary dysfunction via digital high-speed video microscopy (DHSV). Although both techniques are useful for PCD diagnosis, they have limitations and need to be supported by new methodologies, including genetic analysis of genes related to PCD. In this article, we review classical and recently associated mutations related to ciliary alterations leading to PCD, which can be useful for early diagnosis of the disease and subsequent early management of OME.

Keywords

Primary ciliary dyskinesia Otitis media Kartagener syndrome Ciliopathies Genetics Cilia Gene mutations 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Afzelius BA. A human syndrome caused by immotile cilia. Science. 1976;193:317–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Rossman CM, Forrest JB, Lee RM, Newhouse MT. The dyskinetic cilia syndrome: ciliary motility in immotile cilia syndrome. Chest. 1980;78:580–2.PubMedCrossRefGoogle Scholar
  3. 3.
    Afzelius BA, Mossberg B. Immotile-cilia syndrome (primary ciliary dyskinesia), including Kartagener syndrome. In: Scriver C, Beaudet AL, Sly W, Valle D, editors. The metabolic and molecular bases of inherited diseases. 7th ed. New York: McGraw-Hill; 1995. p. 3943–54.Google Scholar
  4. 4.
    Afzelius BA. Situs inversus and ciliary abnormalities. What is the connection? Int J DevBiol. 1995;39:839–44.Google Scholar
  5. 5.
    Afzelius BA. The immotile-cilia syndrome: a microtubule-associated defect. CRC Crit Rev Biochem. 1985;19:63–87.PubMedCrossRefGoogle Scholar
  6. 6.
    Ellerman A, Bisgaard H. Longitudinal study of lung function in a cohort of primary ciliary dyskinesia. EurRespir J. 1997;10:2376–9.CrossRefGoogle Scholar
  7. 7.
    Lous J, Burton MJ, Felding FU, Ovesen T, Rovers MM, Williamson I. Grommets (ventilation tubes) for hearing loss associated with otitis media with effusion in children. Cochrane Database Syst Rev. 2010;(10):CD001801.Google Scholar
  8. 8.
    Simpson SA, Thomas CL, van der Linden MC, Macmillan H, van der Wouden JC, Butler C. Identification of children in the first four years of life for early treatment for otitis media with effusion. Cochrane Database Syst Rev. 2007;1:CD004163.PubMedGoogle Scholar
  9. 9.
    Wolter NE, Dell SD, James AL, Campisi P. Middle ear ventilation in children with primary ciliary dyskinesia. Int J Pediatr Otorhinolaryngol. 2012;76:1565–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Majithia A, Fong J, Hariri M, Harcourt J. Hearing outcomes in children with primary ciliary dyskinesia–a longitudinal study. Int J Pediatr Otorhinolaryngol. 2005;69:1061–4.PubMedCrossRefGoogle Scholar
  11. 11.
    Casselbrant ML, Mandel EM, Jung J, Ferrell RE, Tekely K, Szatkiewicz JP, et al. Otitis media: a genome-wide linkage scan with evidence of susceptibility loci within the 17q12 and 10q22.3 regions. BMC Med Genet. 2009;10:85.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Bush A, Cole P, Hariri M, Mackay I, Phillips G, O’Callaghan C, et al. Primary ciliary dyskinesia: diagnosis and standards of care. Eur Respir J. 1998;12:982–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Armengot M, Bonet M, Carda C, Gómez MJ, Milara J, Mata M, et al. Development and validation of a method of cilia motility analysis for the early diagnosis of primary ciliary dyskinesia. Acta Otorrinolaringol Esp. 2012;63:1–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Noone PG, Leigh MW, Sannuti A, Minnix SL, Carson JL, Hazucha M, et al. Primary ciliary dyskinesia: diagnostic and phenotypic features. Am J Respir Crit Care Med. 2004;169:459–67.PubMedCrossRefGoogle Scholar
  15. 15.
    Carda C, Armengot M, Escribano A, Peydro A. Ultrastructural patterns of primary ciliar dyskinesia syndrome. Ultrastruct Pathol. 2005;29:3–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Jorissen M, Willems T, Van der SB Verbeken E, De Boeck K. Ultrastructural expression of primary ciliary dyskinesia after ciliogenesis in culture. Acta Otorhinolaryngol Belg. 2000;54:343–56.PubMedGoogle Scholar
  17. 17.
    Escudier E, Couprie M, Duriez B, Roudot- Thoraval F, Millepied MC, Pruliere-Escabasse V, et al. Computer-assisted analysis helps detect inner dynein arm abnormalities. Am J Respir Crit Care Med. 2002;166:1257–62.PubMedCrossRefGoogle Scholar
  18. 18.
    Mata M, Sarrion I, Armengot M, Carda C, Martinez I, Melero JA, et al. Respiratory syncytial virus inhibits ciliagenesis in differentiated normal human bronchial epithelial cells: effectiveness of N-acetylcysteine. PLoS One. 2012;7:e48037.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Mata M, Martinez I, Melero JA, Tenor H, Cortijo J. Roflumilast inhibits respiratory syncytial virus infection in human differentiated bronchial epithelial cells. PLoS One. 2013;8:e69670.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Leigh MW, Pittman JE, Carson JL, Ferkol TW, Dell SD, Davis SD, et al. Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome. Genet Med. 2009;11:473–87.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Olbrich H, Haffner K, Kispert A, Volkel A, Volz A, Sasmaz G, et al. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat Genet. 2002;30:143–4.PubMedCrossRefGoogle Scholar
  22. 22.
    Loges NT, Olbrich H, Fenske L, Mussaffi H, Horvath J, Fliegauf M, et al. DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. Am J Hum Genet. 2008;83:547–58.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Pennarun G, Escudier E, Chapelin C, Bridoux AM, Cacheux V, Roger G, et al. Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am J Hum Genet. 1999;65:1508–19.Google Scholar
  24. 24.•
    Mazor M, Alkrinawi S, Chalifa-Caspi V, Manor E, Sheffield VC, Aviram M, et al. Primary ciliary dyskinesia caused by homozygous mutation in DNAL1, encoding dynein light chain 1. Am J Hum Genet. 2011;88:599–607. This study demonstrates that a homozygous point mutation in DNAL1 is associated with absent or markedly shortened ODAs..PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Duriez B, Duquesnoy P, Escudier E, Bridoux AM, Escalier D, Rayet I, et al. A common variant in combination with a nonsense mutation in a member of the thioredoxin family causes primary ciliary dyskinesia. Proc Natl Acad Sci U S A. 2007;104:3336–41.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Mitchison HM, Schmidts M, Loges NT, Freshour J, Dritsoula A, Hirst RA, et al. Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia. Nat Genet. 2012;44(381–9):S1–2.Google Scholar
  27. 27.
    Omran H, Kobayashi D, Olbrich H, Tsukahara T, Loges NT, Hagiwara H, et al. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature. 2008;456:611–6.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Loges NT, Olbrich H, Becker-Heck A, Häffner K, Heer A, Reinhard C, et al. Deletions and point mutations of LRRC50 cause primary ciliary dyskinesia due to dynein arm defects. Am J Hum Genet. 2009;85:883–9.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Panizzi JR, Becker-Heck A, Castleman VH, Al-Mutairi DA, Liu Y, Loges NT, et al. CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nat Genet. 2012;44:714–9.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Kott E, Duquesnoy P, Copin B, Legendre M, Dastot-Le Moal F, Montantin G, et al. Loss-of-function mutations in LRRC6, a gene essential for proper axonemal assembly of inner and outer dynein arms, cause primary ciliary dyskinesia. Am J Hum Genet. 2012;91:958–64.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Castleman VH, Romio L, Chodhari R, Hirst RA, de Castro SC, Parker KA, et al. Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-microtubular-pair abnormalities. Am J Hum Genet. 2009;84:197–209.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Merveille AC, Davis EE, Becker-Heck A, Legendre M, Amirav I, Bataille G, et al. CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nat Genet. 2011;43:72–8.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.•
    Becker-Heck A, Zohn IE, Okabe N, Pollock A, Lenhart KB, Sullivan-Brown J, et al. The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat Genet. 2011;43:79–84. The authors identify an uncharacterized coiled-coil domain containing a protein, CCDC40, essential for correct left-right patterning. PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.••
    Olbrich H, Schmidts M, Werner C, Onoufriadis A, Loges NT, Raidt J, et al. Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am J Hum Genet. 2012;91:672–84. Using high screening SNPs methodologies, the authors find a PCD-associated mutation in HYDIN causing a premature protein termination in respiratory cells and not affecting nodal cilia function. PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Haimo LT, Rosenbaum JL. Cilia, flagella, and microtubules. J Cell Biol. 1981;91:125–30.CrossRefGoogle Scholar
  36. 36.
    Chodhari R, Mitchison HM, Meeks M. Cilia, primary ciliary dyskinesia and molecular genetics. Paediatr Respir Rev. 2004;5:69–76.PubMedCrossRefGoogle Scholar
  37. 37.
    Pazour GJ, Witman GB. The vertebrate primary cilium is a sensory organelle. Curr Opin Cell Biol. 2003;15:105–10.PubMedCrossRefGoogle Scholar
  38. 38.
    Wagner MK, Yost HJ. Left-right development: the roles of nodal cilia. Curr Biol. 2000;10:R149–51.PubMedCrossRefGoogle Scholar
  39. 39.
    Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell. 1998;95:829–37.PubMedCrossRefGoogle Scholar
  40. 40.
    Pigino G, Ishikawa T. Axonemal radial spokes: 3D structure, function and assembly. Bioarchitecture. 2012;2:50–8.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Pedersen LB, Rosenbaum JL. Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr Top Dev Biol. 2008;85:23–61.PubMedCrossRefGoogle Scholar
  42. 42.
    Satir P. Structural basis of ciliary movement. Environ Health Perspect. 1980;35:77–82.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Kamiya R. Exploring the function of inner and outer dynein arms with Chlamydomonas mutants. Cell Motil Cytoskeleton. 1995;32:98–102.PubMedCrossRefGoogle Scholar
  44. 44.
    Smith EF, Lefebvre PA. The role of central apparatus components in flagellar motility and microtubule assembly. Cell Motil Cytoskeleton. 1997;38:1–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Dutcher SK, Huang B, Luck DJ. Genetic dissection of the central pair microtubules of the flagella of Chlamydomonas reinhardtii. J Cell Biol. 1984;98:229–36.PubMedCrossRefGoogle Scholar
  46. 46.
    Brokaw CJ, Luck DJ, Huang B. Analysis of the movement of Chlamydomonas flagella: the function of the radial-spoke system is revealed by comparison of wild-type and mutant flagella. J Cell Biol. 1982;92:722–32.PubMedCrossRefGoogle Scholar
  47. 47.
    Afzelius B. Electron microscopy of the sperm tail; results obtained with a new fixative. J Biophys Biochem Cytol. 1959;5:269–78.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Pigino G, Bui KH, Maheshwari A, Lupetti P, Diener D, Ishikawa T. Cryoelectron tomography of radial spokes in cilia and flagella. J Cell Biol. 2011;195:673–87.PubMedCrossRefGoogle Scholar
  49. 49.
    Satir P. Studies on cilia. 3. Further studies on the cilium tip and a “sliding filament” model of ciliary motility. J Cell Biol. 1968;39:77–94.PubMedCrossRefGoogle Scholar
  50. 50.
    Heuser T, Raytchev M, Krell J, Porter ME, Nicastro D. The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. J Cell Biol. 2009;187:921–33.PubMedCrossRefGoogle Scholar
  51. 51.
    Wright CV. Mechanisms of left-right asymmetry: what's right and what's left? Dev Cell. 2001;1:179–86.PubMedCrossRefGoogle Scholar
  52. 52.
    Zhou H, Wang X, Brighton L, Hazucha M, Jaspers I, Carson JL. Increased nasal epithelial ciliary beat frequency associated with lifestyle tobacco smoke exposure. Inhal Toxicol. 2009;21:875–81.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Li D, Shirakami G, Zhan X, Johns RA. Regulation of ciliary beat frequency by the nitric oxide-cyclic guanosine monophosphate signaling pathway in rat airway epithelial cells. Am J Respir Cell Mol Biol. 2000;23:175–81.PubMedCrossRefGoogle Scholar
  54. 54.
    Wyatt TA, Spurzem JR, May K, Sisson JH. Regulation of ciliary beat frequency by both PKA and PKG in bovine airway epithelial cells. Am J Physiol. 1998;275:L827–35.PubMedGoogle Scholar
  55. 55.
    Dirksen ER, Sanderson MJ. Regulation of ciliary activity in the mammalian respiratory tract. Biorheology. 1990;27:533–45.PubMedGoogle Scholar
  56. 56.
    Sanderson MJ, Dirksen ER. Mechanosensitive and beta-adrenergic control of the ciliary beat frequency of mammalian respiratory tract cells in culture. Am Rev Respir Dis. 1989;139:432–40.PubMedCrossRefGoogle Scholar
  57. 57.
    Bartoloni L, Blouin JL, Pan Y, Gehrig C, Maiti AK, Scamuffa N, et al. Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc Natl Acad Sci U S A. 2002;99:10282–6.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Schwabe GC, Hoffmann K, Loges NT, Birker D, Rossier C, de Santi MM, et al. Primary ciliary dyskinesia associated with normal axoneme ultrastructure is caused by DNAH11 mutations. Hum Mutat. 2008;29:289–98.PubMedCrossRefGoogle Scholar
  59. 59.
    Guichard C, Harricane MC, Lafitte JJ, Godard P, Zaegel M, Tack V, et al. Axonemal dynein intermediate-chain gene (DNAI1) mutations result in situs inversus and primary ciliary dyskinesia (Kartagener syndrome). Am J Hum Genet. 2001;68:1030–5.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Zariwala M, Noone PG, Sannuti A, Minnix S, Zhou Z, Leigh MW, et al. Germline mutations in an intermediate chain dynein cause primary ciliary dyskinesia. Am J Respir Cell Mol Biol. 2001;25:577–83.PubMedCrossRefGoogle Scholar
  61. 61.
    Zariwala MA, Leigh MW, Ceppa F, Kennedy MP, Noone PG, Carson JL, et al. Mutations of DNAI1 in primary ciliary dyskinesia: evidence of founder effect in a common mutation. Am J Respir Crit Care Med. 2006;174:858–66.PubMedCrossRefGoogle Scholar
  62. 62.
    Escudier E, Duquesnoy P, Papon JF, Amselem S. Ciliary defects and genetics of primary ciliary dyskinesia. Paediatr Respir Rev. 2009;10:51–4.PubMedCrossRefGoogle Scholar
  63. 63.
    Geremek M, Zietkiewicz E, Diehl SR, Alizadeh BZ, Wijmenga C, Witt M. Linkage analysis localises a Kartagener syndrome gene to a 3.5 cM region on chromosome 15q24-25. J Med Genet. 2006;43:e1.PubMedCrossRefGoogle Scholar
  64. 64.
    Knowles MR, Ostrowski LE, Loges NT, Hurd T, Leigh MW, Huang L, et al. Mutations in SPAG1 cause primary ciliary dyskinesia associated with defective outer and inner dynein arms. Am J Hum Genet. 2013;93:711–20.PubMedCrossRefGoogle Scholar
  65. 65.••
    Knowles MR, Leigh MW, Carson JL, Davis SD, Dell SD, Ferkol TW, et al. Mutations of DNAH11 in patients with primary ciliary dyskinesia with normal ciliary ultrastructure. Thorax. 2012;67:433–41. The authors demonstrate that mutations in DNAH11 are common causes of PCD patients without ciliary ultrastructural defects..PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Pifferi M, Michelucci A, Conidi ME, Cangiotti AM, Simi P, Macchia P, et al. New DNAH11 mutations in primary ciliary dyskinesia with normal axonemal ultrastructure. Eur Respir J. 2010;35:1413–6.PubMedCrossRefGoogle Scholar
  67. 67.••
    Knowles MR, Leigh MW, Ostrowski LE, Huang L, Carson JL, Hazucha MJ, et al. Exome sequencing identifies mutations in CCDC114 as a cause of primary ciliary dyskinesia. Am J Hum Genet. 2013;92:99–106. This article emphasises the association of CCDC114 with PCD and the usefulness of exome sequencing to identify genetic causes in heterogeneous recessive disorders..PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.•
    Onoufriadis A, Paff T, Antony D, Shoemark A, Micha D, Kuyt B, et al. Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia. Am J Hum Genet. 2013;92:88–98. The study demonstrates that deficiency of CCDC114 causes a complete absence of ciliary ODAs. PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Takada S, Wilkerson CG, Wakabayashi K, Kamiya R, Witman GB. The outer dynein arm-docking complex: composition and characterization of a subunit (oda1) necessary for outer arm assembly. Mol Biol Cell. 2002;13:1015–29.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Kennedy MP, Omran H, Leigh MW, Dell S, Morgan L, Molina PL, et al. Congenital heart disease and other heterotaxic defects in a large cohort of patients with primary ciliary dyskinesia. Circulation. 2007;115:2814–21.PubMedCrossRefGoogle Scholar
  71. 71.
    Barbato A, Frischer T, Kuehni CE, Snijders D, Azevedo I, Baktai G, et al. Primary ciliary dyskinesia: a consensus statement on diagnostic and treatment approaches in children. Eur Respir J. 2009;34:1264–76.PubMedCrossRefGoogle Scholar
  72. 72.
    Freshour J, Yokoyama R, Mitchell DR. Chlamydomonas flagellar outer row dynein assembly protein ODA7 interacts with both outer row and I1 inner row dyneins. J Biol Chem. 2007;282:5404–12.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Duquesnoy P, Escudier E, Vincensini L, Freshour J, Bridoux AM, Coste A, et al. Loss-of-function mutations in the human ortholog of Chlamydomonas reinhardtii ODA7 disrupt dynein arm assembly and cause primary ciliary dyskinesia. Am J Hum Genet. 2009;85:890–6.PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Taipale M, Kaminen N, Nopola-Hemmi J, Haltia T, Myllyluoma B, Lyytinen H, et al. A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain. Proc Natl Acad Sci U S A. 2003;100:11553–8.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.•
    Tarkar A, Loges NT, Slagle CE, Francis R, Dougherty GW, Tamayo JV, et al. DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nat Genet. 2013;45:995–1003. This study proposes DYX1C1 as a new dynein axonemal assembly factor DNAAF2..PubMedCrossRefGoogle Scholar
  76. 76.•
    Moore DJ, Onoufriadis A, Shoemark A, Simpson MA, Zur Lage PI, de Castro SC, et al. Mutations in ZMYND10, a gene essential for proper axonemal assembly of inner and outer dynein arms in humans and flies, cause primary ciliary dyskinesia. Am J Hum Genet. 2013;93:346–56. The authors conclude that ZMYND10 is required for IDA and ODA assembly and that alterations of this protein cause PCD with laterality defects. PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science. 2007;318:245–50.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Nakhleh N, Francis R, Giese RA, Tian X, Li Y, Zariwala MA, et al. High prevalence of respiratory ciliary dysfunction in congenital heart disease patients with heterotaxy. Circulation. 2012;125:2232–42.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.••
    Blanchon S, Legendre M, Copin B, Duquesnoy P, Montantin G, Kott E, et al. Delineation of CCDC39/CCDC40 mutation spectrum and associated phenotypes in primary ciliary dyskinesia. J Med Genet. 2012;49:410–6. The authors propose CCDC39 and CCDC40 mutation as the major cause of PCD with IDA defects, which can be useful for the diagnosis of this alteration, often difficult to be discriminated by electron microscopy. PubMedCrossRefGoogle Scholar
  80. 80.
    Antony D, Becker-Heck A, Zariwala MA, Schmidts M, Onoufriadis A, Forouhan M, et al. Mutations in CCDC39 and CCDC40 are the major cause of primary ciliary dyskinesia with axonemal disorganization and absent inner dynein arms. Hum Mutat. 2013;34:462–72.PubMedCrossRefGoogle Scholar
  81. 81.
    Narayan D, Krishnan SN, Upender M, Ravikumar TS, Mahoney MJ, Dolan Jr TF, et al. Unusual inheritance of primary ciliary dyskinesia (Kartagener's syndrome). J Med Genet. 1994;31:493–6.PubMedCrossRefGoogle Scholar
  82. 82.
    van Dorp DB, Wright AF, Carothers AD, Bleeker-Wagemakers EM. A family with RP3 type of X-linked retinitis pigmentosa: an association with ciliary abnormalities. Hum Genet. 1992;88:331–4.PubMedCrossRefGoogle Scholar
  83. 83.
    Iannaccone A, Breuer DK, Wang XF, Kuo SF, Normando EM, Filippova E, et al. Clinical and immunohistochemical evidence for an X linked retinitis pigmentosa syndrome with recurrent infections and hearing loss in association with an RPGR mutation. J Med Genet. 2003;40:e118.PubMedCrossRefGoogle Scholar
  84. 84.
    Moore A, Escudier E, Roger G, Tamalet A, Pelosse B, Marlin S, et al. RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa. J Med Genet. 2006;43:326–33.PubMedCrossRefGoogle Scholar
  85. 85.
    Budny B, Chen W, Omran H, Fliegauf M, Tzschach A, Wisniewska M, et al. A novel X-linked recessive mental retardation syndrome comprising macrocephaly and ciliary dysfunction is allelic to oral-facial-digital type I syndrome. Hum Genet. 2006;120(2):171–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Krawczyński MR, Witt M. PCD and RP: X-linked inheritance of both disorders? Pediatr Pulmonol. 2004;38:88–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Zito I, Downes SM, Patel RJ, Cheetham ME, Ebenezer ND, Jenkins SA, et al. RPGR mutation associated with retinitis pigmentosa, impaired hearing, and sinorespiratory infections. J Med Genet. 2003;40:609–15.PubMedCrossRefGoogle Scholar
  88. 88.
    Hong DH, Pawlyk B, Sokolov M, Strissel KJ, Yang J, Tulloch B, et al. RPGR isoforms in photoreceptor connecting cilia and the transitional zone of motile cilia. Invest Ophthalmol Vis Sci. 2003;44:2413–21.PubMedCrossRefGoogle Scholar
  89. 89.
    Schermer B, Höpker K, Omran H, Ghenoiu C, Fliegauf M, Fekete A, et al. Phosphorylation by casein kinase 2 induces PACS-1 binding of nephrocystin and targeting to cilia. EMBO J. 2005;24:4415–24.PubMedCrossRefGoogle Scholar
  90. 90.••
    Bukowy-Bieryłło Z, Ziętkiewicz E, Loges NT, Wittmer M, Geremek M, Olbrich H, et al. RPGR mutations might cause reduced orientation of respiratory cilia. Pediatr Pulmonol. 2013;48:352–63. This study confirms that RPGR mutations affect the ciliary beat coordination and the proper respiratory cilia orientation, contributing to the PCD phenotype. PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Manuel Mata
    • 1
    • 5
    • 7
  • Lara Milian
    • 2
    • 6
    • 8
  • Miguel Armengot
    • 3
    • 7
  • Carmen Carda
    • 1
    • 4
  1. 1.Department of Pathology. Faculty of Medicine and OdontologyUniversity of ValenciaValenciaSpain
  2. 2.Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO)ValenciaSpain
  3. 3.Department of Surgery. Faculty of MedicineUniversity of ValenciaValenciaSpain
  4. 4.Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana (INCLIVA)ValenciaSpain
  5. 5.Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES)MallorcaSpain
  6. 6.Dr. Peset University HospitalValenciaSpain
  7. 7.General University Hospital of Valencia, SpainValenciaSpain
  8. 8.Department of PharmacologyFaculty of Medicine and Odontology, University of ValenciaValenciaSpain

Personalised recommendations