Role of “Western Diet” in Inflammatory Autoimmune Diseases

  • Arndt Manzel
  • Dominik N. Muller
  • David A. Hafler
  • Susan E. Erdman
  • Ralf A. Linker
  • Markus KleinewietfeldEmail author
Part of the following topical collections:
  1. Topical Collection on Autoimmunity


Developed societies, although having successfully reduced the burden of infectious disease, constitute an environment where metabolic, cardiovascular, and autoimmune diseases thrive. Living in westernized countries has not fundamentally changed the genetic basis on which these diseases emerge, but has strong impact on lifestyle and pathogen exposure. In particular, nutritional patterns collectively termed the “Western diet”, including high-fat and cholesterol, high-protein, high-sugar, and excess salt intake, as well as frequent consumption of processed and ‘fast foods’, promote obesity, metabolic syndrome, and cardiovascular disease. These factors have also gained high interest as possible promoters of autoimmune diseases. Underlying metabolic and immunologic mechanisms are currently being intensively explored. This review discusses the current knowledge relative to the association of “Western diet” with autoimmunity, and highlights the role of T cells as central players linking dietary influences to autoimmune pathology.


Western diet Autoimmune diseases Autoimmunity Obesity Sodium Inflammatory Gut microbiome T cell regulation 



This work was supported by a National MS Society Collaborative Research Center Award CA1061-A-18, National Institutes of Health Grants P01 AI045757, U19 AI046130, U19 AI070352, and P01 AI039671, and by a Jacob Javits Merit award (NS2427) from the National Institute of Neurological Disorders and Stroke, the Penates Foundation and the Nancy Taylor Foundation for Chronic Diseases, Inc. (to David A. Hafler) and by National Institutes of Health Grants P30-ES002109 and U01 CA164337 (to Susan E. Erdman).

Compliance with Ethics Guidelines

Conflict of Interest

Arndt Manzel, Dominik N. Muller, David A. Hafler, Susan E. Erdman, Ralf A. Linker, and Markus Kleinewietfeld declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.•
    Sawcer S et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011;476(7359):214–9. Comprehensive analysis of genetic risk factors for multiple slerosis.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Cotsapas C, Hafler DA. Immune-mediated disease genetics: the shared basis of pathogenesis. Trends Immunol. 2013;34(1):22–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Bogdanos DP et al. Twin studies in autoimmune disease: genetics, gender and environment. J Autoimmun. 2012;38(2–3):J156–69.PubMedCrossRefGoogle Scholar
  4. 4.
    Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med. 2002;347(12):911–20.PubMedCrossRefGoogle Scholar
  5. 5.
    Okada H et al. The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update. Clin Exp Immunol. 2010;160(1):1–9.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Svenningsson A et al. Incidence of MS during two fifteen-year periods in the Gothenburg region of Sweden. Acta Neurol Scand. 1990;82(3):161–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Cook SD et al. Declining incidence of multiple sclerosis in the Orkney Islands. Neurology. 1985;35(4):545–51.PubMedCrossRefGoogle Scholar
  8. 8.
    Elhami SR et al. A 20-year incidence trend (1989–2008) and point prevalence (March 20, 2009) of multiple sclerosis in Tehran, Iran: a population-based study. Neuroepidemiology. 2011;36(3):141–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Houzen H et al. Increasing prevalence and incidence of multiple sclerosis in northern Japan. Mult Scler. 2008;14(7):887–92.PubMedCrossRefGoogle Scholar
  10. 10.
    Kira J. Multiple sclerosis in the Japanese population. Lancet Neurol. 2003;2(2):117–27.PubMedCrossRefGoogle Scholar
  11. 11.
    Yamamoto T, Nakahigashi M, Saniabadi AR. Review article: diet and inflammatory bowel disease—epidemiology and treatment. Aliment Pharmacol Ther. 2009;30(2):99–112.PubMedCrossRefGoogle Scholar
  12. 12.
    Rook GA. Hygiene hypothesis and autoimmune diseases. Clin Rev Allergy Immunol. 2012;42(1):5–15.PubMedCrossRefGoogle Scholar
  13. 13.
    Rapaport B, Karceski S. Multiple sclerosis and stress. Neurology. 2012;79(5):e47–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Costenbader KH, Karlson EW. Cigarette smoking and autoimmune disease: what can we learn from epidemiology? Lupus. 2006;15(11):737–45.PubMedCrossRefGoogle Scholar
  15. 15.
    Hernan MA, Olek MJ, Ascherio A. Cigarette smoking and incidence of multiple sclerosis. Am J Epidemiol. 2001;154(1):69–74.PubMedCrossRefGoogle Scholar
  16. 16.
    Brantley PJ, Myers VH, Roy HJ. Environmental and lifestyle influences on obesity. J La State Med Soc. 2005;157(Spec No 1):S19–27.PubMedGoogle Scholar
  17. 17.
    Landsberg L et al. Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment—a position paper of the The Obesity Society and The American Society of Hypertension. Obesity (Silver Spring). 2013;21(1):8–24.CrossRefGoogle Scholar
  18. 18.
    Procaccini C et al. Obesity and susceptibility to autoimmune diseases. Expert Rev Clin Immunol. 2011;7(3):287–94.PubMedCrossRefGoogle Scholar
  19. 19.
    Schwarz S, Leweling H. Multiple sclerosis and nutrition. Mult Scler. 2005;11(1):24–32.PubMedCrossRefGoogle Scholar
  20. 20.
    Cashman KD, Shanahan F. Is nutrition an aetiological factor for inflammatory bowel disease? Eur J Gastroenterol Hepatol. 2003;15(6):607–13.PubMedCrossRefGoogle Scholar
  21. 21.
    Aho K, Heliovaara M. Risk factors for rheumatoid arthritis. Ann Med. 2004;36(4):242–51.PubMedCrossRefGoogle Scholar
  22. 22.
    Andersen V et al. Diet and risk of inflammatory bowel disease. Dig Liver Dis. 2012;44(3):185–94.PubMedCrossRefGoogle Scholar
  23. 23.
    Virtanen SM et al. Food consumption and advanced beta cell autoimmunity in young children with HLA-conferred susceptibility to type 1 diabetes: a nested case-control design. Am J Clin Nutr. 2012;95(2):471–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Norris JM et al. Omega-3 polyunsaturated fatty acid intake and islet autoimmunity in children at increased risk for type 1 diabetes. JAMA. 2007;298(12):1420–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Agranoff BW, Goldberg D. Diet and the geographical distribution of multiple sclerosis. Lancet. 1974;2(7888):1061–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Esparza ML, Sasaki S, Kesteloot H. Nutrition, latitude, and multiple sclerosis mortality: an ecologic study. Am J Epidemiol. 1995;142(7):733–7.PubMedGoogle Scholar
  27. 27.
    Lauer K. The risk of multiple sclerosis in the U.S.A. in relation to sociogeographic features: a factor-analytic study. J Clin Epidemiol. 1994;47(1):43–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Munger KL, Chitnis T, Ascherio A. Body size and risk of MS in two cohorts of US women. Neurology. 2009;73(19):1543–50.PubMedCrossRefGoogle Scholar
  29. 29.
    Hedstrom AK, Olsson T, Alfredsson L. High body mass index before age 20 is associated with increased risk for multiple sclerosis in both men and women. Mult Scler. 2012;18(9):1334–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Swank RL et al. Multiple sclerosis in rural Norway its geographic and occupational incidence in relation to nutrition. N Engl J Med. 1952;246(19):722–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Ricketts JR, Rothe MJ, Grant-Kels JM. Nutrition and psoriasis. Clin Dermatol. 2010;28(6):615–26.PubMedCrossRefGoogle Scholar
  32. 32.
    Naldi L et al. Dietary factors and the risk of psoriasis. Results of an Italian case-control study. Br J Dermatol. 1996;134(1):101–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Phillips CM. Nutrigenetics and metabolic disease: current status and implications for personalised nutrition. Nutrients. 2013;5(1):32–57.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Hill JO. Understanding and addressing the epidemic of obesity: an energy balance perspective. Endocr Rev. 2006;27(7):750–61.PubMedCrossRefGoogle Scholar
  35. 35.
    Ono T, Guthold R, Strong K. WHO Global Comparable Estimates.; 2005.
  36. 36.
    Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Sterry W, Strober BE, Menter A. Obesity in psoriasis: the metabolic, clinical and therapeutic implications. Report of an interdisciplinary conference and review. Br J Dermatol. 2007;157(4):649–55.PubMedCrossRefGoogle Scholar
  38. 38.
    Ferraz-Amaro I et al. Metabolic syndrome in rheumatoid arthritis. Mediat Inflamm. 2013;2013:710928.CrossRefGoogle Scholar
  39. 39.
    Chung CP et al. Prevalence of the metabolic syndrome is increased in rheumatoid arthritis and is associated with coronary atherosclerosis. Atherosclerosis. 2008;196(2):756–63.PubMedCrossRefGoogle Scholar
  40. 40.
    Mijac DD et al. Nutritional status in patients with active inflammatory bowel disease: prevalence of malnutrition and methods for routine nutritional assessment. Eur J Intern Med. 2010;21(4):315–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Delgado-Aros S et al. Obesity is associated with increased risk of gastrointestinal symptoms: a population-based study. Am J Gastroenterol. 2004;99(9):1801–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Desreumaux P et al. Inflammatory alterations in mesenteric adipose tissue in Crohn’s disease. Gastroenterology. 1999;117(1):73–81.PubMedCrossRefGoogle Scholar
  43. 43.
    Ouchi N et al. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85–97.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Winer S et al. Obesity predisposes to Th17 bias. Eur J Immunol. 2009;39(9):2629–35.PubMedCrossRefGoogle Scholar
  45. 45.•
    Poutahidis T et al. Microbial reprogramming inhibits Western diet-associated obesity. PLoS ONE. 2013;8(7):e68596. Study demonstrating that probiotic bacteria can prevent obesity in a Treg-dependent manner.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Cipolletta D et al. PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature. 2012;486(7404):549–53.PubMedCentralPubMedGoogle Scholar
  47. 47.•
    Cipolletta D et al. Tissular T(regs): a unique population of adipose-tissue-resident Foxp3+CD4+ T cells that impacts organismal metabolism. Semin Immunol. 2011;23(6):431–7. Comprehensive review on fat-residing Tregs.PubMedCrossRefGoogle Scholar
  48. 48.
    Sumarac-Dumanovic M et al. Increased activity of interleukin-23/interleukin-17 proinflammatory axis in obese women. Int J Obes (Lond). 2009;33(1):151–6.CrossRefGoogle Scholar
  49. 49.
    Ahmed M, Gaffen SL. IL-17 in obesity and adipogenesis. Cytokine Growth Factor Rev. 2010;21(6):449–53.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Paik J et al. High-fat diet-induced obesity exacerbates inflammatory bowel disease in genetically susceptible Mdr1a-/- male mice. J Nutr. 2013;143(8):1240–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Jhun JY et al. Obesity aggravates the joint inflammation in a collagen-induced arthritis model through deviation to Th17 differentiation. Exp Mol Med. 2012;44(7):424–31.PubMedCrossRefGoogle Scholar
  52. 52.
    Timmermans S, et al. High fat diet exacerbates neuroinflammation in an animal model of multiple sclerosis by activation of the renin angiotensin system. J NeuroImmune Pharmacol. 2013. doi: 10.1007/s11481-013-9502-4.
  53. 53.
    Sanna V et al. Leptin surge precedes onset of autoimmune encephalomyelitis and correlates with development of pathogenic T cell responses. J Clin Invest. 2003;111(2):241–50.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Piccio L, Stark JL, Cross AH. Chronic calorie restriction attenuates experimental autoimmune encephalomyelitis. J Leukoc Biol. 2008;84(4):940–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Unoda K et al. Eicosapentaenoic acid (EPA) induces peroxisome proliferator-activated receptors and ameliorates experimental autoimmune encephalomyelitis. J Neuroimmunol. 2013;256(1–2):7–12.PubMedCrossRefGoogle Scholar
  56. 56.
    Sanchez-Fidalgo S et al. Dietary extra virgin olive oil polyphenols supplementation modulates DSS-induced chronic colitis in mice. J Nutr Biochem. 2013;24(7):1401–13.PubMedCrossRefGoogle Scholar
  57. 57.
    Leslie CA et al. A fish oil diet reduces the severity of collagen induced arthritis after onset of the disease. Clin Exp Immunol. 1988;73(2):328–32.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Aktas O et al. Green tea epigallocatechin-3-gallate mediates T cellular NF-kappa B inhibition and exerts neuroprotection in autoimmune encephalomyelitis. J Immunol. 2004;173(9):5794–800.PubMedGoogle Scholar
  59. 59.••
    Wu C et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature. 2013;496(7446):513–7. Experimental work on a new salt-sensitive pathway in the control of Th17 responses.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.••
    Kleinewietfeld M et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature. 2013;496(7446):518–22. First study to show an influence of high-salt on human and murine Th17 differentiation and of high-salt diet on EAE severity.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Okada Y, et al. Trans fatty acids exacerbate DSS-induced colitis by promoting the upregulation of macrophage-derived proinflammatory cytokines involved in T helper 17 cell polarization. Clin Exp Immunol. 2013.Google Scholar
  62. 62.
    Pond CM. Paracrine relationships between adipose and lymphoid tissues: implications for the mechanism of HIV-associated adipose redistribution syndrome. Trends Immunol. 2003;24(1):13–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Matarese G et al. Leptin as a metabolic link to multiple sclerosis. Nat Rev Neurol. 2010;6(8):455–61.PubMedCrossRefGoogle Scholar
  64. 64.
    De Rosa V et al. Leptin neutralization interferes with pathogenic T cell autoreactivity in autoimmune encephalomyelitis. J Clin Invest. 2006;116(2):447–55.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Brown IJ et al. Salt intakes around the world: implications for public health. Int J Epidemiol. 2009;38(3):791–813.PubMedCrossRefGoogle Scholar
  66. 66.
    Savica V, Bellinghieri G, Kopple JD. The effect of nutrition on blood pressure. Annu Rev Nutr. 2010;30:365–401.PubMedCrossRefGoogle Scholar
  67. 67.
    Bragulat E, de la Sierra A. Salt intake, endothelial dysfunction, and salt-sensitive hypertension. J Clin Hypertens (Greenwich). 2002;4(1):41–6.CrossRefGoogle Scholar
  68. 68.
    Guzik TJ et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 2007;204(10):2449–60.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Kvakan H et al. Regulatory T cells ameliorate angiotensin II-induced cardiac damage. Circulation. 2009;119(22):2904–12.PubMedCrossRefGoogle Scholar
  70. 70.
    Klack K, Bonfa E, Borba Neto EF. Diet and nutritional aspects in systemic lupus erythematosus. Rev Bras Reumatol. 2012;52(3):384–408.PubMedCrossRefGoogle Scholar
  71. 71.
    Shapiro L, Dinarello CA. Osmotic regulation of cytokine synthesis in vitro. Proc Natl Acad Sci U S A. 1995;92(26):12230–4.PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Junger WG et al. Hypertonic saline enhances cellular immune function. Circ Shock. 1994;42(4):190–6.PubMedGoogle Scholar
  73. 73.
    Loomis WH et al. Hypertonicity rescues T cells from suppression by trauma-induced anti-inflammatory mediators. Am J Physiol Cell Physiol. 2001;281(3):C840–8.PubMedGoogle Scholar
  74. 74.
    Go WY et al. NFAT5/TonEBP mutant mice define osmotic stress as a critical feature of the lymphoid microenvironment. Proc Natl Acad Sci U S A. 2004;101(29):10673–8.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Kino T et al. Brx mediates the response of lymphocytes to osmotic stress through the activation of NFAT5. Sci Signal. 2009;2(57):ra5.PubMedCentralPubMedGoogle Scholar
  76. 76.
    Woehrle T et al. Hypertonic stress regulates T cell function via pannexin-1 hemichannels and P2X receptors. J Leukoc Biol. 2010;88(6):1181–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Titze J. Water-free sodium accumulation. Semin Dial. 2009;22(3):253–5.PubMedCrossRefGoogle Scholar
  78. 78.
    Machnik A et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med. 2009;15(5):545–52.PubMedCrossRefGoogle Scholar
  79. 79.•
    Wiig H et al. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J Clin Invest. 2013;123(7):2803–15. Study demonstrating salt-dependent effects on macrophages in vivo.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.•
    Rakova N et al. Long-term space flight simulation reveals infradian rhythmicity in human na(+) balance. Cell Metab. 2013;17(1):125–31. Long-term study on salt intake in humans under highly controlled conditions.PubMedCrossRefGoogle Scholar
  81. 81.
    Marchesi J, Shanahan F. The normal intestinal microbiota. Curr Opin Infect Dis. 2007;20(5):508–13.PubMedCrossRefGoogle Scholar
  82. 82.•
    Kau AL et al. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474(7351):327–36. Comprehensive review on nutrition factors, intestinal microbiota, and immune responses.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Hildebrandt MA, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology. 2009;137(5):1716–24 e1-2.Google Scholar
  84. 84.
    Hormannsperger G, Haller D. Molecular crosstalk of probiotic bacteria with the intestinal immune system: clinical relevance in the context of inflammatory bowel disease. Int J Med Microbiol. 2010;300(1):63–73.PubMedCrossRefGoogle Scholar
  85. 85.
    Maccaferri S, Biagi E, Brigidi P. Metagenomics: key to human gut microbiota. Dig Dis. 2011;29(6):525–30.PubMedCrossRefGoogle Scholar
  86. 86.
    Turnbaugh PJ et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4.PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Qin J et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.PubMedCrossRefGoogle Scholar
  88. 88.
    Morgan XC et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012;13(9):R79.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.••
    Berer K et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011;479(7374):538–41. Experimental study linking microbiota to neuroinflammation.PubMedCrossRefGoogle Scholar
  90. 90.
    Tlaskalova-Hogenova H et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol. 2011;8(2):110–20.PubMedCrossRefGoogle Scholar
  91. 91.
    Lavasani S et al. A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells. PLoS ONE. 2010;5(2):e9009.PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.•
    Lee YK et al. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 2011;108 Suppl 1:4615–22. Experimental study linking microbiota to neuroinflammation.PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.•
    Atarashi K et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331(6015):337–41. Study showing the induction of Tregs by specific bacteria.PubMedCrossRefGoogle Scholar
  94. 94.••
    Atarashi K et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500(7461):232–6. First study showing the induction of functional Tregs by a selected set of human bacteria.PubMedCrossRefGoogle Scholar
  95. 95.•
    Esplugues E et al. Control of TH17 cells occurs in the small intestine. Nature. 2011;475(7357):514–8. Study on intestinal control of Th17 responses.PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Gomez-Vaquero C et al. Nutritional status in patients with rheumatoid arthritis. Joint Bone Spine. 2001;68(5):403–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Giugliano D, Esposito K. Mediterranean diet and metabolic diseases. Curr Opin Lipidol. 2008;19(1):63–8.PubMedGoogle Scholar
  98. 98.
    Torkildsen O et al. Omega-3 fatty acid treatment in multiple sclerosis (OFAMS Study): a randomized, double-blind, placebo-controlled trial. Arch Neurol. 2012;69(8):1044–51.PubMedCrossRefGoogle Scholar
  99. 99.
    van Nood E et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368(5):407–15.PubMedCrossRefGoogle Scholar
  100. 100.
    Weinstock JV. Autoimmunity: the worm returns. Nature. 2012;491(7423):183–5.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Arndt Manzel
    • 1
  • Dominik N. Muller
    • 2
  • David A. Hafler
    • 3
    • 4
  • Susan E. Erdman
    • 5
  • Ralf A. Linker
    • 1
  • Markus Kleinewietfeld
    • 3
    • 4
    • 6
    Email author
  1. 1.Department of NeurologyUniversity of ErlangenErlangenGermany
  2. 2.Experimental and Clinical Research Center, a joint cooperation between the Charitè Medical Faculty and the Max-Delbruck Center for Molecular MedicineBerlinGermany
  3. 3.Departments of Neurology and ImmunobiologyYale School of MedicineNew HavenUSA
  4. 4.Broad Institute of MIT and HarvardCambridgeUSA
  5. 5.Division of Comparative MedicineMassachusetts Institute of Technology (MIT)CambridgeUSA
  6. 6.Faculty of MedicineDresden University of Technology (TUD)DresdenGermany

Personalised recommendations