Current Allergy and Asthma Reports

, Volume 13, Issue 5, pp 469–476

Rationale and Clinical Results of Inhibiting Interleukin-5 for the Treatment of Severe Asthma



Severe asthma is responsible for considerable morbidity and a high proportion of the healthcare costs attributable to asthma. Management is not straightforward as the clinical, pathological and physiological features are heterogeneous and the relationships between these features are poorly understood. In recent years significant progress has been made in understanding this heterogeneity and eosinophilic asthma has emerged as a potentially clinically important phenotype because treatment with monoclonal antibodies against IL-5 is effective. This has required a change in our understanding of the role of eosinophilic airway inflammation in airways disease and the developments of reliable biomarkers of eosinophilic airway inflammation. We will review these developments and describe the clinical experience so far with treatment with monoclonal antibiotics against IL-5.


Asthma Eosinophils Interleukin-5 IL-5 Inhibiting Inhibition Mepolizumab Severe asthma Treatment 

List of Abbreviations


Airway hyperresponsiveness


Bronchoalveolar lavage


Eosinophil cationic protein


Eosinophil-derived neurotoxin


Eosinophil peroxidise


Exhaled nitric oxide concentration


Granulocyte-macrophage colony-stimulating factor


Immunoglobulin E




Major basic protein


Randomised controlled trial


Ribonucleic acid


Reactive oxygen species


Type 2 T helper


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    British Thoracic Society Scottish Intercollegiate Guidelines Network. British guideline on the management of asthma. Thorax. 2008;4:iv1–121.CrossRefGoogle Scholar
  2. 2.
    GINA Report: Global Strategy for Asthma Management and Prevention. (2012).
  3. 3.
    Holgate ST, Polosa R. The mechanisms, diagnosis, and management of severe asthma in adults. Lancet. 2006;368:780–93.PubMedCrossRefGoogle Scholar
  4. 4.
    Bateman ED, Hurd SS, Barnes PJ, Bousquet J, Drazen JM, FitzGerald M, et al. Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J. 2008;31:143–78.PubMedCrossRefGoogle Scholar
  5. 5.
    Bousquet J, Mantzouranis E, Cruz AA, Ait-Khaled N, Baena-Cagnani CE, Bleecker ER, et al. Uniform definition of asthma severity, control, and exacerbations: document presented for the World Health Organization Consultation on Severe Asthma. J Allergy Clin Immunol. 2010;126:926–38.PubMedCrossRefGoogle Scholar
  6. 6.
    Jackson DJ, Sykes A, Mallia P, Johnston SL. Asthma exacerbations: origin, effect, and prevention. J Allergy Clin Immunol. 2011;128:1165–74.PubMedCrossRefGoogle Scholar
  7. 7.
    Barnes PJ. Inhaled glucocorticoids for asthma. N Engl J Med. 1995;332:868–75.PubMedCrossRefGoogle Scholar
  8. 8.
    Barnes PJ. Glucocorticoids and asthma. Ernst Schering Res Found Workshop. 2002;40:1–23.PubMedGoogle Scholar
  9. 9.
    Wenzel S. Severe asthma in adults. Am J Respir Crit Care Med. 2005;172:149–60.PubMedCrossRefGoogle Scholar
  10. 10.
    Strunk RC, Bloomberg GR. Omalizumab for asthma. N Engl J Med. 2006;354:2689–95.PubMedCrossRefGoogle Scholar
  11. 11.
    Bush A, Pavord ID. Omalizumab: NICE to USE you, to LOSE you NICE. Thorax. 2013;68:7–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Wenzel SE. Eosinophils in asthma—closing the loop or opening the door? N Engl J Med. 2009;360:1026–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Ehrlich P. Beiträge zur Kenntniss der granulirten Bindegewebszellen und der eosinophilen Leukocythen. Archiv fuer Anatomie und Physiologie: Physiologische Abteilung 1879: 166-169.Google Scholar
  14. 14.
    Weller PF. Human eosinophils. J Allergy Clin Immunol. 1997;100:283–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Rosenberg HF, Phipps S, Foster PS. Eosinophil trafficking in allergy and asthma. J Allergy Clin Immunol. 2007;119:1303–10. quiz 1311-2.PubMedCrossRefGoogle Scholar
  16. 16.
    Walsh ER, Stokes K, August A. The role of eosinophils in allergic airway inflammation. Discov Med. 2010;9:357–62.PubMedGoogle Scholar
  17. 17.
    Bousquet J, Chanez P, Lacoste JY, Barneon G, Ghavanian N, Enander I, et al. Eosinophilic inflammation in asthma. N Engl J Med. 1990;323:1033–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Motojima S, Frigas E, Loegering DA, Gleich GJ. Toxicity of eosinophil cationic proteins for guinea pig tracheal epithelium in vitro. Am Rev Respir Dis. 1989;139:801–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Oddera S, Silvestri M, Balbo A, Jovovich BO, Penna R, Crimi E, et al. Airway eosinophilic inflammation, epithelial damage, and bronchial hyperresponsiveness in patients with mild-moderate, stable asthma. Allergy. 1996;51:100–7.PubMedGoogle Scholar
  20. 20.
    Hernnas J, Sarnstrand B, Lindroth P, Peterson CG, Venge P, Malmstrom A. Eosinophil cationic protein alters proteoglycan metabolism in human lung fibroblast cultures. Eur J Cell Biol. 1992;59:352–63.PubMedGoogle Scholar
  21. 21.
    Humbles AA, Lloyd CM, McMillan SJ, Friend DS, Xanthou G, McKenna EE, et al. A critical role for eosinophils in allergic airways remodeling. Science. 2004;305:1776–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB, Gibbs RL, et al. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med. 1999;160:1001–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Flood-Page P, Menzies-Gow A, Phipps S, Ying S, Wangoo A, Ludwig MS, et al. Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J Clin Invest. 2003;112:1029–36.PubMedGoogle Scholar
  24. 24.
    Coyle AJ, Ackerman SJ, Burch R, Proud D, Irvin CG. Human eosinophil-granule major basic protein and synthetic polycations induce airway hyperresponsiveness in vivo dependent on bradykinin generation. J Clin Invest. 1995;95:1735–40.PubMedCrossRefGoogle Scholar
  25. 25.
    Lee JJ, Dimina D, Macias MP, Ochkur SI, McGarry MP, O'Neill KR, et al. Defining a link with asthma in mice congenitally deficient in eosinophils. Science. 2004;305:1773–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Wardlaw AJ, Dunnette S, Gleich GJ, Collins JV, Kay AB. Eosinophils and mast cells in bronchoalveolar lavage in subjects with mild asthma. Relationship to bronchial hyperreactivity. Am Rev Respir Dis. 1988;137:62–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Wardlaw AJ, Brightling C, Green R, Woltmann G, Pavord I. Eosinophils in asthma and other allergic diseases. Br Med Bull. 2000;56:985–1003.PubMedCrossRefGoogle Scholar
  28. 28.
    Deykin A, Lazarus SC, Fahy JV, Wechsler ME, Boushey HA, Chinchilli VM, et al. Asthma Clinical Research Network, National Heart, Lung, and Blood Institute/NIH. Sputum eosinophil counts predict asthma control after discontinuation of inhaled corticosteroids. J Allergy Clin Immunol. 2005;115:720–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Leuppi JD, Salome CM, Jenkins CR, Anderson SD, Xuan W, Marks GB, et al. Predictive markers of asthma exacerbation during stepwise dose reduction of inhaled corticosteroids. Am J Respir Crit Care Med. 2001;163:406–12.PubMedCrossRefGoogle Scholar
  30. 30.
    Green RH, Brightling CE, McKenna S, Hargadon B, Parker D, Bradding P, et al. Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. Lancet. 2002;360:1715–21.PubMedCrossRefGoogle Scholar
  31. 31.
    Chlumsky J, Striz I, Terl M, Vondracek J. Strategy aimed at reduction of sputum eosinophils decreases exacerbation rate in patients with asthma. J Int Med Res. 2006;34:129–39.PubMedCrossRefGoogle Scholar
  32. 32.
    Takatsu K. Interleukin-5 and IL-5 receptor in health and diseases. Proc Jpn Acad Ser B Phys Biol Sci. 2011;87:463–85.PubMedCrossRefGoogle Scholar
  33. 33.
    Sanderson CJ, O'Garra A, Warren DJ, Klaus GG. Eosinophil differentiation factor also has B-cell growth factor activity: proposed name interleukin 4. Proc Natl Acad Sci U S A. 1986;83:437–40.PubMedCrossRefGoogle Scholar
  34. 34.
    van Leeuwen BH, Martinson ME, Webb GC, Young IG. Molecular organization of the cytokine gene cluster, involving the human IL-3, IL-4, IL-5, and GM-CSF genes, on human chromosome 5. Blood. 1989;73:1142–8.PubMedGoogle Scholar
  35. 35.
    Miyajima A, Mui AL, Ogorochi T, Sakamaki K. Receptors for granulocyte-macrophage colony-stimulating factor, interleukin-3, and interleukin-5. Blood. 1993;82:1960–74.PubMedGoogle Scholar
  36. 36.
    Dent LA, Strath M, Mellor AL, Sanderson CJ. Eosinophilia in transgenic mice expressing interleukin 5. J Exp Med. 1990;172:1425–31.PubMedCrossRefGoogle Scholar
  37. 37.
    Fujisawa T, Abu-Ghazaleh R, Kita H, Sanderson CJ, Gleich GJ. Regulatory effect of cytokines on eosinophil degranulation. J Immunol. 1990;144:642–6.PubMedGoogle Scholar
  38. 38.
    Walsh GM, Hartnell A, Wardlaw AJ, Kurihara K, Sanderson CJ, Kay AB. IL-5 enhances the in vitro adhesion of human eosinophils, but not neutrophils, in a leucocyte integrin (CD11/18)-dependent manner. Immunology. 1990;71:258–65.PubMedGoogle Scholar
  39. 39.
    van Rensen EL, Stirling RG, Scheerens J, Staples K, Sterk PJ, Barnes PJ, et al. Evidence for systemic rather than pulmonary effects of interleukin-5 administration in asthma. Thorax. 2001;56:935–40.PubMedCrossRefGoogle Scholar
  40. 40.
    Shi H, Qin S, Huang G, Chen Y, Xiao C, Xu H, et al. Infiltration of eosinophils into the asthmatic airways caused by interleukin 5. Am J Respir Cell Mol Biol. 1997;16:220–4.PubMedCrossRefGoogle Scholar
  41. 41.
    Rothenberg ME, Petersen J, Stevens RL, Silberstein DS, McKenzie DT, Austen KF, et al. IL-5-dependent conversion of normodense human eosinophils to the hypodense phenotype uses 3T3 fibroblasts for enhanced viability, accelerated hypodensity, and sustained antibody-dependent cytotoxicity. J Immunol. 1989;143:2311–6.PubMedGoogle Scholar
  42. 42.
    Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med. 1996;183:195–201.PubMedCrossRefGoogle Scholar
  43. 43.
    Tanaka H, Komai M, Nagao K, Ishizaki M, Kajiwara D, Takatsu K, et al. Role of interleukin-5 and eosinophils in allergen-induced airway remodeling in mice. Am J Respir Cell Mol Biol. 2004;31:62–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Leckie MJ, ten Brinke A, Khan J, Diamant Z, O'Connor BJ, Walls CM, et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet. 2000;356:2144–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Flood-Page PT, Menzies-Gow AN, Kay AB, Robinson DS. Eosinophil's role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airway. Am J Respir Crit Care Med. 2003;167:199–204.PubMedCrossRefGoogle Scholar
  46. 46.
    Flood-Page P, Swenson C, Faiferman I, Matthews J, Williams M, Brannick L, et al. International Mepolizumab Study Group. A study to evaluate safety and efficacy of mepolizumab in patients with moderate persistent asthma. Am J Respir Crit Care Med. 2007;176:1062–71.PubMedCrossRefGoogle Scholar
  47. 47.
    Reddel H, Ware S, Marks G, Salome C, Jenkins C, Woolcock A. Differences between asthma exacerbations and poor asthma control. Lancet. 1999;353:364–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Pauwels RA, Löfdahl C, Postma DS, Tattersfield AE, O'Byrne P, Barnes PJ, et al. Effect of Inhaled Formoterol and Budesonide on Exacerbations of Asthma. N Engl J Med. 1997;337:1405–11.PubMedCrossRefGoogle Scholar
  49. 49.
    Jayaram L, Pizzichini MM, Cook RJ, Boulet LP, Lemiere C, Pizzichini E, et al. Determining asthma treatment by monitoring sputum cell counts: effect on exacerbations. Eur Respir J. 2006;27:483–94.PubMedCrossRefGoogle Scholar
  50. 50.
    Green RH, Brightling CE, McKenna S, Hargadon B, Neale N, Parker D, et al. Comparison of asthma treatment given in addition to inhaled corticosteroids on airway inflammation and responsiveness. Eur Respir J. 2006;27:1144–51.PubMedCrossRefGoogle Scholar
  51. 51.
    Nair P, Pizzichini MM, Kjarsgaard M, Inman MD, Efthimiadis A, Pizzichini E, et al. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N Engl J Med. 2009;360:985–93.PubMedCrossRefGoogle Scholar
  52. 52.
    Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W, Sousa A, et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med. 2009;360:973–84.PubMedCrossRefGoogle Scholar
  53. 53.
    •• Pavord ID, Korn S, Howarth P, Bleecker ER, Buhl R, Keene ON, et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet. 2012;380:651–9. This large multicenter RCT showed clear effect of mepolizumab on severe exacerbation frequency in severe eosinophilic asthmatics.PubMedCrossRefGoogle Scholar
  54. 54.
    • Liu Y, Zhang S, Li DW, Jiang SJ. Efficacy of anti-interleukin-5 therapy with mepolizumab in patients with asthma: a meta-analysis of randomized placebo-controlled trials. PLoS One. 2013;8:e59872. A recent large meta-analysis summarising RCT on the use of mepolizumab in asthmatics.PubMedCrossRefGoogle Scholar
  55. 55.
    Castro M, Mathur S, Hargreave F, Boulet LP, Xie F, Young J, et al. Res-5-0010 Study Group. Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am J Respir Crit Care Med. 2011;184:1125–32.PubMedCrossRefGoogle Scholar
  56. 56.
    Busse WW, Katial R, Gossage D, Sari S, Wang B, Kolbeck R, et al. Safety profile, pharmacokinetics, and biologic activity of MEDI-563, an anti-IL-5 receptor alpha antibody, in a phase I study of subjects with mild asthma. J Allergy Clin Immunol. 2010;125:1237–1244.e2.PubMedCrossRefGoogle Scholar
  57. 57.
    Ghazi A, Trikha A, Calhoun WJ. Benralizumab—a humanized mAb to IL-5Ralpha with enhanced antibody-dependent cell-mediated cytotoxicity—a novel approach for the treatment of asthma. Expert Opin Biol Ther. 2012;12:113–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Allakhverdi Z, Allam M, Renzi PM. Inhibition of antigen-induced eosinophilia and airway hyperresponsiveness by antisense oligonucleotides directed against the common beta chain of IL-3, IL-5, GM-CSF receptors in a rat model of allergic asthma. Am J Respir Crit Care Med. 2002;165:1015–21.PubMedCrossRefGoogle Scholar
  59. 59.
    Gauvreau GM, Boulet LP, Cockcroft DW, Baatjes A, Cote J, Deschesnes F, et al. Antisense therapy against CCR3 and the common beta chain attenuates allergen-induced eosinophilic responses. Am J Respir Crit Care Med. 2008;177:952–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Huang H, Lee C, Chiang B. Small interfering RNA against interleukin-5 decreases airway eosinophilia and hyper-responsiveness. Gene Ther. 2008;15:660–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Rothenberg ME, Klion AD, Roufosse FE, Kahn JE, Weller PF, Simon HU, et al. Study Group. Treatment of patients with the hypereosinophilic syndrome with mepolizumab. N Engl J Med. 2008;358:1215–28.PubMedCrossRefGoogle Scholar
  62. 62.
    Saha S, Brightling CE. Eosinophilic airway inflammation in COPD. Int J Chron Obstruct Pulmon Dis. 2006;1:39–47.PubMedGoogle Scholar
  63. 63.
    Bafadhel M, Saha S, Siva R, McCormick M, Monteiro W, Rugman P, et al. Sputum IL-5 concentration is associated with a sputum eosinophilia and attenuated by corticosteroid therapy in COPD. Respiration. 2009;78:256–62.PubMedCrossRefGoogle Scholar
  64. 64.
    Abba AA. Exhaled nitric oxide in diagnosis and management of respiratory diseases. Ann Thorac Med. 2009;4:173–81.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Respiratory Medicine, Thoracic Surgery, and Allergy, Institute for Lung and HealthGlenfield HospitalLeicesterUK
  2. 2.Department of Infection, Immunity and InflammationUniversity of Leicester Medical SchoolLeicesterUK

Personalised recommendations