Current Allergy and Asthma Reports

, Volume 13, Issue 4, pp 361–370 | Cite as

Autoimmunity in Immunodeficiency

  • Krista Todoric
  • Jessica B. Koontz
  • Daniel Mattox
  • Teresa K. Tarrant


Primary immunodeficiencies (PID) comprise a diverse group of clinical disorders with varied genetic defects. Paradoxically, a substantial proportion of PID patients develop autoimmune phenomena in addition to having increased susceptibility to infections from their impaired immunity. Although much of our understanding comes from data gathered through experimental models, there are several well-characterized PID that have improved our knowledge of the pathways that drive autoimmunity. The goals of this review will be to discuss these immunodeficiencies and to review the literature with respect to the proposed mechanisms for autoimmunity within each put forth to date.


Review Autoimmunity Primary immunodeficiency Autoreactive Autoantigen Tolerance Apoptosis Autoimmune polyendocrinopathy candidiasis ectodermal dysplasia (APECED) Hyper IgM syndrome (HIgM) X-linked agammaglobulinemia (XLA) Common variable immunodeficiency (CVID) Immunodysregulation polyendocrinopathy enteropathy x-linked (IPEX) Omenn syndrome (OS) DiGeorge syndrome Autoimmune lymphoproliferative syndrome (ALPS) Wiskott Aldrich syndrome (WAS) IgA deficiency (IgAD) Complement deficiency Chronic granulomatous disease (CGD) 


Conflict of Interest

Krista Todoric declares that she has no conflict of interest.

Jessica B. Koontz declares that she has no conflict of interest.

Daniel Mattox declares that he has no conflict of interest.

Teresa K. Tarrant has served as a consultant for Roche.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Schurman SH, Candotti F. Autoimmunity in Wiskott-Aldrich syndrome. Curr Opin Rheumatol. 2003;15(4):446–53.PubMedCrossRefGoogle Scholar
  2. 2.
    Marrella V, Poliani P, Fontana E, et al. Anti-CD3epsilon mAb improves thymic architecture and prevents autoimmune manifestations in a mouse model of Omenn syndrome: therapeutic implications. Blood. 2012;120(5):1005–14.PubMedCrossRefGoogle Scholar
  3. 3.
    Michels AW, Gottlieb PA. Autoimmune polyglandular syndromes. Nat Rev Endocrinol. 2010;6(5):270–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Westerberg LS, Klein C, Snapper SB. Breakdown of T cell tolerance and autoimmunity in primary immunodeficiency–lessons learned from monogenic disorders in mice and men. Curr Opin Immunol. 2008;20(6):646–54.PubMedCrossRefGoogle Scholar
  5. 5.
    Kraaij MD, Savage ND, van der Kooij SW, et al. Induction of regulatory T cells by macrophages is dependent on production of reactive oxygen species. Proc Natl Acad Sci U S A. 2010;107(41):17686–91.PubMedCrossRefGoogle Scholar
  6. 6.
    Ramsey C, Wingvist O, Puhakka L, et al. Aire deficient mice develop multiple features of APECED phenotype and show altered immune response. Hum Mol Genet. 2002;11(4):397–409.PubMedCrossRefGoogle Scholar
  7. 7.
    Rizzi M, Ferrera F, Filaci G, et al. isruption of immunological tolerance: role of AIRE gene in autoimmunity. Autoimmun Rev. 2006;2:145–7.CrossRefGoogle Scholar
  8. 8.
    •• Arason GJ, Jorgensen GH, Ludviksson BR. Primary immunodeficiency and autoimmunity: lessons from human diseases. Scand J Immunol. 2010;71(5):317–28. This paper discusses autoimmunity in primary immunodeficiencies as monogenic and polygenic disorders. It also contrasts this discussion with other primary immunodeficiencies not strongly associated with autoimmunity.PubMedCrossRefGoogle Scholar
  9. 9.
    Goyal R, Bulua AC, Nikolov NP, et al. Rheumatologic and autoimmune manifestations of primary immunodeficiency disorders. Curr Opin Rheumatol. 2009;21(1):78–84.PubMedCrossRefGoogle Scholar
  10. 10.
    Bussone G, Mouthon L. Autoimmune manifestations in primary immune deficiencies. Autoimmun Rev. 2009;8(4):332–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Grammatikos AP, Tsokos GC. Immunodeficiency and autoimmunity: lessons from systemic lupus erythematosus. Trends Mol Med. 2012;18(2):101–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Lehman HK, Ballow M. Immune deficiency disorders with autoimmunity and abnormalities in immune regulation-monogenic autoimmune diseases. Clin Rev Allergy Immunol. 2008;34(2):141–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Patiroglu T, Gungor HE, Unal E. Autoimmune diseases detected in children with primary immunodeficiency diseases: results from a reference centre at middle anatolia. Acta Microbiol Immunol Hung. 2012;59(3):343–53.PubMedCrossRefGoogle Scholar
  14. 14.
    Su MA, Davini D, Cheng P, et al. Defective autoimmune regulator-dependent central tolerance to myelin protein zero is linked to autoimmune peripheral neuropathy. J Immunol. 2012;188(10):4906–12.PubMedCrossRefGoogle Scholar
  15. 15.
    Teh CE, Daley SR, Enders A, et al. T-cell regulation by casitas B-lineage lymphoma (Cblb) is a critical failsafe against autoimmune disease due to autoimmune regulator (Aire) deficiency. Proc Natl Acad Sci U S A. 2010;107(33):14709–14.PubMedCrossRefGoogle Scholar
  16. 16.
    • Atkinson TP. Immune deficiency and autoimmunity. Curr Opin Rheumatol. 2012;24(5):515–21. This paper discusses the new concept of insufficient T cell regulatory function in the setting of aberrant effector T cell development.PubMedCrossRefGoogle Scholar
  17. 17.
    Jesus AA, Duarte AJ, Oliveira JB. Autoimmunity in hyper-IgM syndrome. J Clin Immunol. 2008;28 Suppl 1:S62–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Quartier P, Bustamante J, Sanal O, et al. Clinical, immunologic and genetic analysis of 29 patients with autosomal recessive hyper-IgM syndrome due to Activation-Induced Cytidine Deaminase deficiency. Clin Immunol. 2004;110(1):22–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Winkelstein JA, Marino MC, Ochs, et al. The X-linked hyper-IgM syndrome: clinical and immunologic features of 79 patients. Medicine (Baltimore). 2003;82(6):373–84.CrossRefGoogle Scholar
  20. 20.
    Coutinho A, Carneiro-Sampaio M. Primary immunodeficiencies unravel critical aspects of the pathophysiology of autoimmunity and of the genetics of autoimmune disease. J Clin Immunol. 2008;28 Suppl 1:S4–10.PubMedCrossRefGoogle Scholar
  21. 21.
    • Cunningham-Rundles C. Autoimmunity in primary immune deficiency: taking lessons from our patients. Clin Exp Immunol. 2011;164 Suppl 2:6–11. This paper succinctly summarizes current theories of autoimmunity in primary immunodeficiencies with some focus on B cell defects and CVID.PubMedCrossRefGoogle Scholar
  22. 22.
    Davies EG, Thrasher AJ. Update on the hyper immunoglobulin M syndromes. Br J Haematol. 2010;149(2):167–80.PubMedCrossRefGoogle Scholar
  23. 23.
    Pessach IM, Notarangelo LD. X-linked primary immunodeficiencies as a bridge to better understanding X-chromosome related autoimmunity. J Autoimmun. 2009;33(1):17–24.PubMedCrossRefGoogle Scholar
  24. 24.
    Ng YS, Wardemann H, Chelnis J, et al. Bruton’s tyrosine kinase is essential for human B cell tolerance. J Exp Med. 2004;200(7):927–34.PubMedCrossRefGoogle Scholar
  25. 25.
    Etzioni A. Immune deficiency and autoimmunity. Autoimmun Rev. 2003;2(6):364–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Brandt D, Gershwin ME. Common variable immune deficiency and autoimmunity. Autoimmun Rev. 2006;5(7):465–70.PubMedCrossRefGoogle Scholar
  27. 27.
    Lopes-da-Silva S, Rizzo LV. Autoimmunity in common variable immunodeficiency. J Clin Immunol. 2008;28 Suppl 1:S46–55.PubMedCrossRefGoogle Scholar
  28. 28.
    Agarwal S, Cunningham-Rundles C. Autoimmunity in common variable immunodeficiency. Curr Allergy Asthma Rep. 2009;9(5):347–52.PubMedCrossRefGoogle Scholar
  29. 29.
    Giannouli S, Anagnostou D, Soliotis F, et al. Autoimmune manifestations in common variable immunodeficiency. Clin Rheumatol. 2004;23(5):449–52.PubMedCrossRefGoogle Scholar
  30. 30.
    Knight AK, Cunningham-Rundles C. Inflammatory and autoimmune complications of common variable immune deficiency. Autoimmun Rev. 2006;5(2):156–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Cunningham-Rundles C. Autoimmune manifestations in common variable immunodeficiency. J Clin Immunol. 2008;28 Suppl 1:S42–5.PubMedCrossRefGoogle Scholar
  32. 32.
    McGaha TL, Karlsson MC, Ravetch JV. FcgammaRIIB deficiency leads to autoimmunity and a defective response to apoptosis in Mrl-MpJ mice. J Immunol. 2008;180(8):5670–9.PubMedGoogle Scholar
  33. 33.
    Warnatz K, Voll RE. Pathogenesis of autoimmunity in common variable immunodeficiency. Front Immunol. 2012;3:210.PubMedCrossRefGoogle Scholar
  34. 34.
    Boileau J, Mouillot G, Gerard L, et al. Autoimmunity in common variable immunodeficiency: correlation with lymphocyte phenotype in the French DEFI study. J Autoimmun. 2011;36(1):25–32.PubMedCrossRefGoogle Scholar
  35. 35.
    Bacchetta R, Passerini L, Gambineri E, et al. Defective regulatory and effector T cell functions in patients with FOXP3 mutations. J Clin Invest. 2006;116(6):1713–22.PubMedCrossRefGoogle Scholar
  36. 36.
    Moraes-Vasconcelos D, Costa-Carvalho BT, Torgerson TR, et al. Primary immune deficiency disorders presenting as autoimmune diseases: IPEX and APECED. J Clin Immunol. 2008;28 Suppl 1:S11–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Milner JD, Fasth A, Etzioni A. Autoimmunity in severe combined immunodeficiency (SCID): lessons from patients and experimental models. J Clin Immunol. 2008;28 Suppl 1:S29–33.PubMedCrossRefGoogle Scholar
  38. 38.
    Caudy A, Reddy ST, Chatila T, et al. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J Allergy Clin Immunol. 2007;119(2):482–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Gaspal F, Withers D, Saini M, et al. Abrogation of CD30 and OX40 signals prevents autoimmune disease in FoxP3-deficient mice. J Exp Med. 2011;208(8):1579–84.PubMedCrossRefGoogle Scholar
  40. 40.
    •• Mackay IR, Leskovsek NV, Rose NR. The odd couple: a fresh look at autoimmunity and immunodeficiency. J Autoimmun. 2010;35(3):199–205. This paper highlights a cross-disciplinary summary discussion of the American Autoimmune Related Disease Association (AARDA) on autoimmunity and immunodeficiency.PubMedCrossRefGoogle Scholar
  41. 41.
    Marrella V, Poliani PL, Sabacchi C, et al. Of Omenn and mice. Trends Immunol. 2008;29(3):133–40.PubMedCrossRefGoogle Scholar
  42. 42.
    Somech R, Simon AJ, Lev A, et al. Reduced central tolerance in Omenn syndrome leads to immature self-reactive oligoclonal T cells. J Allergy Clin Immunol. 2009;124(4):793–800.PubMedCrossRefGoogle Scholar
  43. 43.
    Gennery AR. Immunological aspects of 22q11.2 deletion syndrome. Cell Mol Life Sci. 2012;69(1):17–27.PubMedCrossRefGoogle Scholar
  44. 44.
    Turvey SE, Bonilla FA, Junker AK. Primary immunodeficiency diseases: a practical guide for clinicians. Postgrad Med J. 2009;85(1010):660–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Davies JK, Telfer P, Cavenagh JD, et al. Autoimmune cytopenias in the 22q11.2 deletion syndrome. Clin Lab Haematol. 2003;25(3):195–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Gennery AR, Barge D, O’Sullivan JJ, et al. Antibody deficiency and autoimmunity in 22q11.2 deletion syndrome. Arch Dis Child. 2002;86(6):422–5.PubMedCrossRefGoogle Scholar
  47. 47.
    McLean-Tooke A, Barge D, Spickett GP, et al. Immunologic defects in 22q11.2 deletion syndrome. J Allergy Clin Immunol. 2008;122(2):362–7. 367 e1-4.PubMedCrossRefGoogle Scholar
  48. 48.
    Tison BE, Nicholas SK, Abramson SL, et al. Autoimmunity in a cohort of 130 pediatric patients with partial DiGeorge syndrome. J Allergy Clin Immunol. 2011;128(5):1115–7. e1-3.PubMedCrossRefGoogle Scholar
  49. 49.
    Baccala R, Theofilopoulos AN. The new paradigm of T-cell homeostatic proliferation-induced autoimmunity. Trends Immunol. 2005;26(1):5–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Famularo G, Nucera E. Marcellini, et al.: Fas/Fas ligand on the road: an apoptotic pathway common to AIDS, autoimmunity, lymphoproliferation and transplantation. Med Hypotheses. 1999;53(1):50–62.PubMedCrossRefGoogle Scholar
  51. 51.
    Ramenghi U, Bonissoni S, Migliaretti G, et al. Deficiency of the Fas apoptosis pathway without Fas gene mutations is a familial trait predisposing to development of autoimmune diseases and cancer. Blood. 2000;95(10):3176–82.PubMedGoogle Scholar
  52. 52.
    Catucci M, Castiello MC, Pala F, et al. Autoimmunity in wiskott-Aldrich syndrome: an unsolved enigma. Front Immunol. 2012;3:209.PubMedCrossRefGoogle Scholar
  53. 53.
    Lopez-Herrera G, Tampella G, Pan-Hammarstrom Q, et al. Deleterious mutations in LRBA are associated with a syndrome of immune deficiency and autoimmunity. Am J Hum Genet. 2012;90(6):986–1001.PubMedCrossRefGoogle Scholar
  54. 54.
    Wang JW, Howson J, Haller E, et al. Identification of a novel lipopolysaccharide-inducible gene with key features of both A kinase anchor proteins and chs1/beige proteins. J Immunol. 2001;166(7):4586–95.PubMedGoogle Scholar
  55. 55.
    Rezaei N, Moazzami K, Aghamohammadi A, et al. Neutropenia and primary immunodeficiency diseases. Int Rev Immunol. 2009;28(5):335–66.PubMedCrossRefGoogle Scholar
  56. 56.
    Cleland SY, Siegel RM. Wiskott-Aldrich Syndrome at the nexus of autoimmune and primary immunodeficiency diseases. FEBS Lett. 2011;585(23):3710–4.PubMedCrossRefGoogle Scholar
  57. 57.
    Marangoni F, Trifari S, Scaramuzza S, et al. WASP regulates suppressor activity of human and murine CD4(+)CD25(+)FOXP3(+) natural regulatory T cells. J Exp Med. 2007;204(2):369–80.PubMedCrossRefGoogle Scholar
  58. 58.
    Snapper SB, Meelu P, Nguyen D, et al. WASP deficiency leads to global defects of directed leukocyte migration in vitro and in vivo. J Leukoc Biol. 2005;77(6):993–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Thrasher AJ, Burns SO. WASP: a key immunological multitasker. Nat Rev Immunol. 2010;10(3):182–92.PubMedCrossRefGoogle Scholar
  60. 60.
    Zhang L, Radigan L, Salzer U, et al. Transmembrane activator and calcium-modulating cyclophilin ligand interactor mutations in common variable immunodeficiency: clinical and immunologic outcomes in heterozygotes. J Allergy Clin Immunol. 2007;120(5):1178–85.PubMedCrossRefGoogle Scholar
  61. 61.
    Prete F, Catucci M, Labrada M, et al. Wiskott-Aldrich syndrome protein-mediated actin dynamics control type-I interferon production in plasmacytoid dendritic cells. J Exp Med. 2013;210(2):355–74.PubMedCrossRefGoogle Scholar
  62. 62.
    Jacob CM, Pastorino AC, Fahl K, et al. Autoimmunity in IgA deficiency: revisiting the role of IgA as a silent housekeeper. J Clin Immunol. 2008;28 Suppl 1:S56–61.PubMedCrossRefGoogle Scholar
  63. 63.
    Jorgensen GH, Thorsteinsdottir I, Gudmundsson S, et al. Familial aggregation of IgAD and autoimmunity. Clin Immunol. 2009;131(2):233–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Ferreira RC, Pan-Hammarstrom Q, Graham RR, et al. Association of IFIH1 and other autoimmunity risk alleles with selective IgA deficiency. Nat Genet. 2010;42(9):777–80.PubMedCrossRefGoogle Scholar
  65. 65.
    Cale CM, Morton L, Goldblatt D. Cutaneous and other lupus-like symptoms in carriers of X-linked chronic granulomatous disease: incidence and autoimmune serology. Clin Exp Immunol. 2007;148(1):79–84.PubMedCrossRefGoogle Scholar
  66. 66.
    Holland SM. Chronic granulomatous disease. Clin Rev Allergy Immunol. 2010;38(1):3–10.PubMedCrossRefGoogle Scholar
  67. 67.
    Schappi MG, Jaquet V, Belli DC, et al. Hyperinflammation in chronic granulomatous disease and anti-inflammatory role of the phagocyte NADPH oxidase. Semin Immunopathol. 2008;30(3):255–71.PubMedCrossRefGoogle Scholar
  68. 68.
    De Ravin SS, Naumann N, Cowen EW, et al. Chronic granulomatous disease as a risk factor for autoimmune disease. J Allergy Clin Immunol. 2008;122(6):1097–103.PubMedCrossRefGoogle Scholar
  69. 69.
    Foster CB, Lehrnbecher T, Mol F, et al. Host defense molecule polymorphisms influence the risk for immune-mediated complications in chronic granulomatous disease. J Clin Invest. 1998;102(12):2146–55.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Krista Todoric
    • 1
  • Jessica B. Koontz
    • 2
  • Daniel Mattox
    • 2
  • Teresa K. Tarrant
    • 3
  1. 1.Division of Allergy and Immunology, Dept of PediatricsUniversity of North Carolina HospitalsChapel HillUSA
  2. 2.Thurston Arthritis Research CenterUniversity of North CarolinaChapel HillUSA
  3. 3.Thurston Arthritis Research Center, Divisions of Rheumatology & Allergy and Immunology, Dept of MedicineUniversity of North Carolina School of MedicineChapel HillUSA

Personalised recommendations