Current Allergy and Asthma Reports

, Volume 12, Issue 6, pp 520–529 | Cite as

The Pathologic and Clinical Intersection of Atopic and Autoimmune Disease

  • Ankoor Shah


Hypersensitivity reactions of the immune system have been broadly categorized into the atopic and autoimmune depending on whether the antigen triggering the reaction is endogenous (or self) or exogenous, the types of cellular and humoral components involved, and the clinical symptoms. Research into the pathophysiology of the resultant disease states has focused on a dichotomy between Th1 and Th2 T helper lymphocytes thought to govern autoimmune and atopic disease, respectively. Recent discoveries, however, have served to dispute this paradigm and have provided additional insight into the roles of Th17 cells, B-lymphocytes and T regulatory cells as well as the considerable communication and commonalities between the complex signaling pathways. Furthermore, clinical studies have served to challenge the idea that the presence of atopy and autoimmunity are mutually exclusive states. Finally, application of recent approaches to treatment—biologic targeted therapy in autoimmunity and induction of immune tolerance in atopic disease—to both disease states have shown mixed but promising results.


Atopy Atopic disease Autoimmunity Autoimmune disease Th1 Th2 Th17 T regulatory cells B regulatory cells Thymic stromal lymphopoietin IgE autoantibodies Mast cells Immunotherapy Omalizumab 



No potential conflicts of interest relevant to this article were reported.


Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Lilja G, Wickman M. Allergy–atopy–hypersensitivity–a matter of definition. Allergy. 1998;53:1011–2.PubMedCrossRefGoogle Scholar
  2. 2.
    Mackay IR, Anderson WH. What’s in a name? Experimental encephalomyelitis: ‘Allergic’ or ‘autoimmune’. J Neuroimmunol. 2010;223:1–4.PubMedCrossRefGoogle Scholar
  3. 3.
    •• Witebsky E, Rose NR, Terplan K, Paine JR, Egan RW. Chronic thyroiditis and autoimmunization. J Am Med Assoc 1957;164:1439–1447. This study found IgE antibodies cross-reactive between human and environmental antigens. Google Scholar
  4. 4.
    •• Macaubas C, Lee PT, Smallacombe TB, Holt BJ, Wee C, Sly PD, Holt PG. Reciprocal patterns of allergen-induced GATA-3 expression in peripheral blood mononuclear cells from atopics vs. non-atopics. Clin. Exp. Allergy 2002;32:97–106. This paper describes the original description of autoimmunity. Google Scholar
  5. 5.
    Yamada H, Nakashima Y, Okazaki K, Mawatari T, Fukushi J-I, Oyamada A, Fujimura K, Iwamoto Y, Yoshikai Y. Preferential accumulation of activated Th1 cells not only in rheumatoid arthritis but also in osteoarthritis joints. J Rheumatol. 2011;38:1569–75.PubMedCrossRefGoogle Scholar
  6. 6.
    Sun J, Wong B, Cundall M, Goncharova S, Conway M, Dalrymple A, Coyle AJ, Waserman S, Jordana M. Immunoreactivity profile of peripheral blood mononuclear cells from patients with ragweed-induced allergic rhinitis. Clin Exp Allergy. 2007;37:901–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Bartemes KR, Kita H. Dynamic role of epithelium-derived cytokines in asthma. Clin Immunol. 2012;143:222–35.PubMedCrossRefGoogle Scholar
  8. 8.
    Brandt EB, Sivaprasad U. Th2 Cytokines and Atopic Dermatitis. J Clin Cell Immunol 2011;2.Google Scholar
  9. 9.
    Grund LZ, Komegae EN, Lopes-Ferreira M, Lima C. IL-5 and IL-17A are critical for the chronic IgE response and differentiation of long-lived antibody-secreting cells in inflamed tissues. Cytokine. 2012;59:335–51.PubMedCrossRefGoogle Scholar
  10. 10.
    •• Hayashi T, Murase A. Polarization Toward Th1-Type Response in Active, but Not in Inactive, Lupus Inhibits Late Allergic Rhinitis in Lupus-Prone Female NZB × NZWF1 Mice. Inflammation 2012;doi: 10.1007/s10753-012-9494-x. This study demonstrates the role of Il-17, a proinflammatory cytokine associated with autoimmune disease can stimulate IgE antibody formation.
  11. 11.
    Hubner MP, Shi Y, Torrero MN, Mueller E, Larson D, Soloviova K, Gondorf F, Hoerauf A, Killoran KE, Stocker JT, et al. Helminth Protection against Autoimmune Diabetes in Nonobese Diabetic Mice Is Independent of a Type 2 Immune Shift and Requires TGF. J Immunol. 2012;188:559–68.PubMedCrossRefGoogle Scholar
  12. 12.
    Walsh KP, Brady MT, Finlay CM, Boon L, Mills KHG. Infection with a Helminth Parasite Attenuates Autoimmunity through TGF- -Mediated Suppression of Th17 and Th1 Responses. J Immunol. 2009;183:1577–86.PubMedCrossRefGoogle Scholar
  13. 13.
    Kabashima-Kubo R, Nakamura M, Sakabe J-I, Sugita K, Hino R, Mori T, Kobayashi M, Bito T, Kabashima K, Ogasawara K, et al. A group of atopic dermatitis without IgE elevation or barrier impairment shows a high Th1 frequency: Possible immunological state of the intrinsic type. J Dermatol Sci. 2012;67:37–43.PubMedCrossRefGoogle Scholar
  14. 14.
    Tokura Y. Extrinsic and intrinsic types of atopic dermatitis. J Dermatol Sci. 2010;58:1–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Valenta R, Duchêne M, Pettenburger K, Sillaber C, Valent P, Bettelheim P, Breitenbach M, Rumpold H, Kraft D, Scheiner O. Identification of profilin as a novel pollen allergen; IgE autoreactivity in sensitized individuals. Science. 1991;253:557–60.PubMedCrossRefGoogle Scholar
  16. 16.
    Balaji H, Heratizadeh A, Wichmann K, Niebuhr M, Crameri R, Scheynius A, Werfel T. Malassezia sympodialis thioredoxin-specific T cells are highly cross-reactive to human thioredoxin in atopic dermatitis. J Allergy Clin Immunol. 2011;128:92–99.e4.PubMedCrossRefGoogle Scholar
  17. 17.
    Heratizadeh A, Mittermann I, Balaji H, Wichmann K, Niebuhr M, Valenta R, Werfel T. The role of T-cell reactivity towards the autoantigen α-NAC in atopic dermatitis. Br J Dermatol. 2011;164:316–24.PubMedCrossRefGoogle Scholar
  18. 18.
    Bünder R, Mittermann I, Herz U, Focke M, Wegmann M, Valenta R, Renz H. Induction of autoallergy with an environmental allergen mimicking a self protein in a murine model of experimental allergic asthma. Journal of Allergy and Clinical Immunology. 2004;114:422–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Gerli R, Bistoni O, Russano A, Fiorucci S, Borgato L, Cesarotti MEF, Lunardi C. In vivo activated T cells in rheumatoid synovitis. Analysis of Th1- and Th2-type cytokine production at clonal level in different stages of disease. Clin Exp Immunol. 2002;129:549–55.PubMedCrossRefGoogle Scholar
  20. 20.
    Chaplin DD. Overview of the immune response. Journal of Allergy and Clinical Immunology. 2010;125:S3–23.PubMedCrossRefGoogle Scholar
  21. 21.
    Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 2003;421:744–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201:233–40.PubMedCrossRefGoogle Scholar
  23. 23.
    Hot A, Miossec P. Effects of interleukin (IL)-17A and IL-17 F in human rheumatoid arthritis synoviocytes. Ann Rheum Dis. 2011;70:727–32.PubMedCrossRefGoogle Scholar
  24. 24.
    Ankathatti Munegowda M, Deng Y, Chibbar R, Xu Q, Freywald A, Mulligan SJ, van Drunen Littel-van den Hurk S, Sun D, Xiong S, Xiang J. A distinct role of CD4+ Th17- and Th17-stimulated CD8+ CTL in the pathogenesis of type 1 diabetes and experimental autoimmune encephalomyelitis. J Clin Immunol. 2011;31:811–26.PubMedCrossRefGoogle Scholar
  25. 25.
    Martin DA, Towne JE, Kricorian G, Klekotka P, Gudjonsson JE, Krueger JG, Russell CB. The Emerging Role of IL-17 in the Pathogenesis of Psoriasis: Preclinical and Clinical Findings. J. Invest. Dermatol. 2012;doi: 10.1038/jid.2012.194.
  26. 26.
    Alunno A, Bartoloni E, Bistoni O, Nocentini G, Ronchetti S, Caterbi S, Valentini V, Riccardi C, Gerli R. Balance between Regulatory T and Th17 Cells in Systemic Lupus Erythematosus: The Old and the New. Clin Dev Immunol. 2012;2012:823085.PubMedCrossRefGoogle Scholar
  27. 27.
    Shen Y, Hu G-H, Yang Y-C, Ke X, Tang X-Y, Hong S-L. Allergen induced Th17 response in the peripheral blood mononuclear cells (PBMCs) of patients with nasal polyposis. Int Immunopharmacol. 2012;12:235–40.PubMedCrossRefGoogle Scholar
  28. 28.
    •• Milner JD. IL-17 producing cells in host defense and atopy. Curr. Opin. Immunol. 2011;23:784–788. Excellent review of the role of Th17 cells in normal immune function and hypersensitivity. Google Scholar
  29. 29.
    Gutowska-Owsiak D, Schaupp AL, Salimi M, Selvakumar TA, McPherson T, Taylor S, Ogg GS. IL-17 downregulates filaggrin and affects keratinocyte expression of genes associated with cellular adhesion. Exp Dermatol. 2012;21:104–10.PubMedCrossRefGoogle Scholar
  30. 30.
    Oyoshi MK, Murphy GF, Geha RS. Filaggrin-deficient mice exhibit TH17-dominated skin inflammation and permissiveness to epicutaneous sensitization with protein antigen. J Allergy Clin Immunol. 2009;124:485–493.e1.PubMedCrossRefGoogle Scholar
  31. 31.
    Kudo M, Melton AC, Chen C, Engler MB, Huang KE, Ren X, Wang Y, Bernstein X, Li JT, Atabai K, et al. IL-17A produced by αβ T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction. Nature Medicine. 2012;18:547–54.PubMedCrossRefGoogle Scholar
  32. 32.
    Milner JD, Brenchley JM, Laurence A, Freeman AF, Hill BJ, Elias KM, Kanno Y, Spalding C, Elloumi HZ, Paulson ML, et al. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature. 2008;452:773–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Quan S-H, Zhang Y-L, Han DH, Iwakura Y, Rhee C-S. Contribution of interleukin 17A to the development and regulation of allergic inflammation in a murine allergic rhinitis model. Ann Allergy Asthma Immunol. 2012;108:342–50.PubMedCrossRefGoogle Scholar
  34. 34.
    Milovanovic M, Drozdenko G, Weise C, Babina M, Worm M. Interleukin-17A promotes IgE production in human B cells. J Invest Dermatol. 2010;130:2621–8.PubMedCrossRefGoogle Scholar
  35. 35.
    d’Hennezel E, Ben-Shoshan M, Ochs HD, Torgerson TR, Russell LJ, Lejtenyi C, Noya FJ, Jabado N, Mazer B, Piccirillo CA. FOXP3 forkhead domain mutation and regulatory T cells in the IPEX syndrome. N Engl J Med. 2009;361:1710–3.PubMedCrossRefGoogle Scholar
  36. 36.
    Josefowicz SZ, Niec RE, Kim HY, Treuting P, Chinen T, Zheng Y, Umetsu DT, Rudensky AY. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature. 2012;482:395–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Kong N, Lan Q, Chen M, Wang J, Shi W, Horwitz DA, Quesniaux V, Ryffel B, Liu Z, Brand D, et al. Antigen-specific TGF-β-induced regulatory T cells but not natural Tregs ameliorate autoimmune arthritis by shifting the balance of Th17 toward Treg cells. Arthritis & Rheumatism 2012;doi: 10.1002/art.34513.
  38. 38.
    Suurmond J, Schuerwegh AJM, Toes REM. Anti-citrullinated protein antibodies in rheumatoid arthritis: a functional role for mast cells and basophils? Ann Rheum Dis. 2011;70 Suppl 1:i55–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Hoppu S, Ronkainen MS, Kulmala P, Akerblom HK, Knip M. Childhood Diabetes in Finland Study Group: GAD65 antibody isotypes and epitope recognition during the prediabetic process in siblings of children with type I diabetes. Clin Exp Immunol. 2004;136:120–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Metcalfe R, Jordan N, Watson P, Gullu S, Wiltshire M, Crisp M, Evans C, Weetman A, Ludgate M. Demonstration of immunoglobulin G, A, and E autoantibodies to the human thyrotropin receptor using flow cytometry. J Clin Endocrinol Metab. 2002;87:1754–61.PubMedCrossRefGoogle Scholar
  41. 41.
    Mikol DD, Ditlow C, Usatin D, Biswas P, Kalbfleisch J, Milner A, Calenoff E. Serum IgE reactive against small myelin protein-derived peptides is increased in multiple sclerosis patients. J Neuroimmunol. 2006;180:40–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Bonfield TL, Ross KR. Asthma heterogeneity and therapeutic options from the clinic to the bench. Curr Opin Allergy Clin Immunol. 2012;12:60–7.PubMedCrossRefGoogle Scholar
  43. 43.
    •• Liu M, Subramanian V, Christie C, Castro M, Mohanakumar T. Immune responses to self-antigens in asthma patients: clinical and immunopathological implications. HIM 2012;73:511–516. Describes evidence of autoimmunity in chronic asthma Google Scholar
  44. 44.
    Hoshino M, Nakamura Y, Sim J, Shimojo J, Isogai S. Bronchial subepithelial fibrosis and expression of matrix metalloproteinase-9 in asthmatic airway inflammation. J Allergy Clin Immunol. 1998;102:783–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Finnegan A, Kaplan CD, Cao Y, Eibel H, Glant TT, Zhang J. Collagen-induced arthritis is exacerbated in IL-10-deficient mice. Arthritis Research & Therapy. 2003;5:R18–24.CrossRefGoogle Scholar
  46. 46.
    Li X, Braun J, Wei B. Regulatory B cells in autoimmune diseases and mucosal immune homeostasis. Autoimmunity. 2011;44:58–68.PubMedCrossRefGoogle Scholar
  47. 47.
    Davidson NJ, Fort MM, Müller W, Leach MW, Rennick DM. Chronic colitis in IL-10−/− mice: insufficient counter regulation of a Th1 response. Int Rev Immunol. 2000;19:91–121.PubMedCrossRefGoogle Scholar
  48. 48.
    Bettelli E, Nicholson LB, Kuchroo VK. IL-10, a key effector regulatory cytokine in experimental autoimmune encephalomyelitis. J Autoimmun. 2003;20:265–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Yang M, Deng J, Liu Y, Ko K-H, Wang X, Jiao Z, Wang S, Hua Z, Sun L, Srivastava G, et al. IL-10-Producing Regulatory B10 Cells Ameliorate Collagen-Induced Arthritis via Suppressing Th17 Cell Generation. Am J Pathol. 2012;180:2375–85.PubMedCrossRefGoogle Scholar
  50. 50.
    Carter NA, Rosser EC, Mauri C. Interleukin-10 produced by B cells is crucial for the suppression of Th17/Th1 responses, induction of T regulatory type 1 cells and reduction of collagen-induced arthritis. Arthritis Research & Therapy. 2012;14:R32.CrossRefGoogle Scholar
  51. 51.
    Singh A, Carson WF, Secor ER, Guernsey LA, Flavell RA, Clark RB, Thrall RS, Schramm CM. Regulatory role of B cells in a murine model of allergic airway disease. J Immunol. 2008;180:7318–26.PubMedGoogle Scholar
  52. 52.
    Lee JH, Noh J, Noh G, Choi WS, Cho S, Lee SS. Allergen-specific transforming growth factor-β-producing CD19 + CD5+ regulatory B-cell (Br3) responses in human late eczematous allergic reactions to cow’s milk. J Interferon Cytokine Res. 2011;31:441–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Griffin DO, Rothstein TL. Human “orchestrator” CD11b(+) B1 cells spontaneously secrete IL-10 and regulate T cell activity. Mol Med 2012;doi: 10.2119/molmed.2012.00203.
  54. 54.
    Roan F, Bell BD, Stoklasek TA, Kitajima M, Han H, Ziegler SF. The multiple facets of thymic stromal lymphopoietin (TSLP) during allergic inflammation and beyond. J Leukoc Biol. 2012;91:877–86.PubMedCrossRefGoogle Scholar
  55. 55.
    Wang Y-H, Ito T, Wang Y-H, Homey B, Watanabe N, Martin R, Barnes CJ, McIntyre BW, Gilliet M, Kumar R, et al. Maintenance and polarization of human TH2 central memory T cells by thymic stromal lymphopoietin-activated dendritic cells. Immunity. 2006;24:827–38.PubMedCrossRefGoogle Scholar
  56. 56.
    Soumelis V, Reche PA, Kanzler H, Yuan W, Edward G, Homey B, Gilliet M, Ho S, Antonenko S, Lauerma A, et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol. 2002;3:673–80.PubMedCrossRefGoogle Scholar
  57. 57.
    Oyoshi MK, Larson RP, Ziegler SF, Geha RS. Mechanical injury polarizes skin dendritic cells to elicit a T(H)2 response by inducing cutaneous thymic stromal lymphopoietin expression. J. Allergy Clin. Immunol. 2010;126:976–84–984.e1–5.Google Scholar
  58. 58.
    Jiang H, Hener P, Li J, Li M. Skin thymic stromal lymphopoietin promotes airway sensitization to inhalant house dust mites leading to allergic asthma in mice. Allergy 2012;doi: 10.1111/j.1398-9995.2012.02857.x.
  59. 59.
    •• Hartgring SAY, Willis CR, Dean CE, Broere F, van Eden W, Bijlsma JWJ, Lafeber FPJG, van Roon JAG. Critical proinflammatory role of thymic stromal lymphopoietin and its receptor in experimental autoimmune arthritis. Arthritis & Rheumatism 2011;63:1878–1887. Evidence for a proinflammatory, autoimmune role for TSLP, typically thought to drive allergic inflammation. Google Scholar
  60. 60.
    Bogiatzi SI, Guillot-Delost M, Cappuccio A, Bichet J-C, Chouchane-Mlik O, Donnadieu M-H, Barillot E, Hupé P, Chlichlia K, Efremidou EI, et al. Multiple-checkpoint inhibition of thymic stromal lymphopoietin-induced T(H)2 response by T(H)17-related cytokines. J Allergy Clin Immunol. 2012;130:233–240.e5.PubMedCrossRefGoogle Scholar
  61. 61.
    Stone KD, Prussin C, Metcalfe DD. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol. 2010;125:S73–80.PubMedCrossRefGoogle Scholar
  62. 62.
    Nagarkar DR, Poposki JA, Comeau MR, Biyasheva A, Avila PC, Schleimer RP, Kato A. Airway epithelial cells activate T(H)2 cytokine production in mast cells through IL-1 and thymic stromal lymphopoietin. J Allergy Clin Immunol. 2012;130:225–232.e4.PubMedCrossRefGoogle Scholar
  63. 63.
    Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E, Garren H, Langer-Gould A, Strober S, Cannella B, Allard J, et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nature Medicine. 2002;8:500–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Sayed BA, Walker ME, Brown MA. Cutting Edge: Mast Cells Regulate Disease Severity in a Relapsing-Remitting Model of Multiple Sclerosis. J Immunol. 2011;186:3294–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Brown MA. Mast cells are important modifiers of autoimmune disease: with so much evidence, why is there still controversy? 2012, doi: 10.3389/fimmu.2012.00147/abstract.
  66. 66.
    •• Suurmond J, Dorjée AL, Boon MR, Knol EF, Huizinga TW, Toes RE, Schuerwegh AJ. Mast cells are the main interleukin 17-positive cells in anticitrullinated protein antibody-positive and -negative rheumatoid arthritis and osteoarthritis synovium. Arthritis Research & Therapy 2011;13:R150. Provides important data regarding the significant role of mast cells in RA. Google Scholar
  67. 67.
    Schuerwegh AJM, Ioan-Facsinay A, Dorjée AL, Roos J, Bajema IM, van der Voort EIH, Huizinga TWJ, Toes REM. Evidence for a functional role of IgE anticitrullinated protein antibodies in rheumatoid arthritis. Proc Natl Acad Sci U S A. 2010;107:2586–91.PubMedCrossRefGoogle Scholar
  68. 68.
    Robbie-Ryan M, Tanzola MB, Secor VH, Brown MA. Cutting edge: both activating and inhibitory Fc receptors expressed on mast cells regulate experimental allergic encephalomyelitis disease severity. J Immunol. 2003;170:1630–4.PubMedGoogle Scholar
  69. 69.
    Ganeshan K, Bryce PJ. Regulatory T cells enhance mast cell production of IL-6 via surface-bound TGF-β. J Immunol. 2012;188:594–603.PubMedCrossRefGoogle Scholar
  70. 70.
    Jönsson F, Mancardi DA, Zhao W, Kita Y, Iannascoli B, Khun H, van Rooijen N, Shimizu T, Schwartz LB, Daëron M, et al. Human FcγRIIA induces anaphylactic and allergic reactions. Blood. 2012;119:2533–44.PubMedCrossRefGoogle Scholar
  71. 71.
    Jönsson F, Mancardi DA, Kita Y, Karasuyama H, Iannascoli B, van Rooijen N, Shimizu T, Daëron M, Bruhns P. Mouse and human neutrophils induce anaphylaxis. J Clin Invest. 2011;121:1484–96.PubMedCrossRefGoogle Scholar
  72. 72.
    Falanga YT, Chaimowitz NS, Charles N, Finkelman FD, Pullen NA, Barbour S, Dholaria K, Faber T, Kolawole M, Huang B, et al. Lyn but Not Fyn Kinase Controls IgG-Mediated Systemic Anaphylaxis. J Immunol. 2012;188:4360–8.PubMedCrossRefGoogle Scholar
  73. 73.
    •• Sheikh A, Smeeth L, Hubbard R. There is no evidence of an inverse relationship between TH2-mediated atopy and TH1-mediated autoimmune disorders: Lack of support for the hygiene hypothesis. Journal of Allergy and Clinical Immunology 2003;111:131–135. Largest epidemiologic study on the relationship between atopic and autoimmune disorders Google Scholar
  74. 74.
    O’Driscoll BR, Milburn HJ, Kemeny DM, Cochrane GM, Panayi GS. Atopy and rheumatoid arthritis. Clin Allergy. 1985;15:547–53.PubMedCrossRefGoogle Scholar
  75. 75.
    Verhoef CM, van Roon JA, Vianen ME, Bruijnzeel-Koomen CA, Lafeber FP, Bijlsma JW. Mutual antagonism of rheumatoid arthritis and hay fever; a role for type 1/type 2 T cell balance. Ann Rheum Dis. 1998;57:275–80.PubMedCrossRefGoogle Scholar
  76. 76.
    Rudwaleit M, Andermann B, Alten R, Sörensen H, Listing J, Zink A, Sieper J, Braun J. Atopic disorders in ankylosing spondylitis and rheumatoid arthritis. Ann Rheum Dis. 2002;61:968–74.PubMedCrossRefGoogle Scholar
  77. 77.
    Bergamaschi R, Villani S, Crabbio M, Ponzio M, Romani A, Verri A, Bargiggia V, Cosi V. Inverse relationship between multiple sclerosis and allergic respiratory diseases. Neurol Sci. 2009;30:115–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Confino-Cohen R, Chodick G, Shalev V, Leshno M, Kimhi O, Goldberg A. Chronic urticaria and autoimmunity: Associations found in a large population study. Journal of Allergy and Clinical Immunology 2012;129:1307–1313Google Scholar
  79. 79.
    Kitaba S, Matsui S, Iimuro E, Nishioka M, Kijima A, Umegaki N, Murota H, Katayama I. Four cases of atopic dermatitis complicated by Sjögren’s syndrome: link between dry skin and autoimmune anhidrosis. Allergol Int. 2011;60:387–91.PubMedCrossRefGoogle Scholar
  80. 80.
    Matsui S, Kitaba S, Itoi S, Kijima A, Murota H, Tani M, Katayama I. A case of disseminated DLE complicated by atopic dermatitis and Sjögren’s syndrome: link between hypohidrosis and skin manifestations. Mod Rheumatol. 2011;21:101–5.PubMedCrossRefGoogle Scholar
  81. 81.
    Lina C, Conghua W, Nan L, Ping Z. Combined Treatment of Etanercept and MTX Reverses Th1/Th2, Th17/Treg Imbalance in Patients with Rheumatoid Arthritis. J Clin Immunol. 2011;31:596–605.PubMedCrossRefGoogle Scholar
  82. 82.
    Machado P, Santos A, Pereira C, Silva J, Chieira C, Malcata A. Increased prevalence of allergic sensitisation in rheumatoid arthritis patients treated with anti-TNFalpha. Joint Bone Spine. 2009;76:508–13.PubMedCrossRefGoogle Scholar
  83. 83.
    Iwasaki M, Saito K, Takemura M, Sekikawa K, Fujii H, Yamada Y, Wada H, Mizuta K, Seishima M, Ito Y. TNF-alpha contributes to the development of allergic rhinitis in mice. J Allergy Clin Immunol. 2003;112:134–40.PubMedCrossRefGoogle Scholar
  84. 84.
    Mo J-H, Kang E-K, Quan S-H, Rhee C-S, Lee CH, Kim DY. Anti-tumor necrosis factor-alpha treatment reduces allergic responses in an allergic rhinitis mouse model. Allergy. 2011;66:279–86.PubMedCrossRefGoogle Scholar
  85. 85.
    Chan JL, Davis-Reed L, Kimball AB. Counter-regulatory balance: atopic dermatitis in patients undergoing infliximab infusion therapy. J Drugs Dermatol. 2004;3:315–8.PubMedGoogle Scholar
  86. 86.
    Linhart B, Bigenzahn S, Hartl A, Lupinek C, Thalhamer J, Valenta R, Wekerle T. Costimulation blockade inhibits allergic sensitization but does not affect established allergy in a murine model of grass pollen allergy. J Immunol. 2007;178:3924–31.PubMedGoogle Scholar
  87. 87.
    Navarini AA, French LE, Hofbauer GFL. Interrupting IL-6-receptor signaling improves atopic dermatitis but associates with bacterial superinfection. J Allergy Clin Immunol. 2011;128:1128–30.PubMedCrossRefGoogle Scholar
  88. 88.
    Corren J, Busse W, Meltzer EO, Mansfield L, Bensch G, Fahrenholz J, Wenzel SE, Chon Y, Dunn M, Weng HH, et al. A randomized, controlled, phase 2 study of AMG 317, an IL-4Ralpha antagonist, in patients with asthma. Am J Respir Crit Care Med. 2010;181:788–96.PubMedCrossRefGoogle Scholar
  89. 89.
    Corren J. Anti-interleukin-5 antibody therapy in asthma and allergies. Curr Opin Allergy Clin Immunol. 2011;11:565–70.PubMedCrossRefGoogle Scholar
  90. 90.
    Piper E, Brightling C, Niven R, Oh C, Faggioni R, Poon K, She D, Kell C, May RD, Geba GP, et al. A phase 2 placebo-controlled study of tralokinumab in moderate-to-severe asthma. Eur Respir J 2012;doi: 10.1183/09031936.00223411.
  91. 91.
    Park S-Y, Choi M-R, Na J-I, Youn S-W, Park K-C, Huh C-H. Recalcitrant atopic dermatitis treated with omalizumab. Ann Dermatol. 2010;22:349–52.PubMedCrossRefGoogle Scholar
  92. 92.
    Sampson HA, Leung DYM, Burks AW, Lack G, Bahna SL, Jones SM, Wong DA. A phase II, randomized, double‑blind, parallel‑group, placebo‑controlled oral food challenge trial of Xolair (omalizumab) in peanut allergy. J Allergy Clin Immunol. 2011;127:1309–10.e1.PubMedCrossRefGoogle Scholar
  93. 93.
    Kamin W, Kopp MV, Erdnuess F, Schauer U, Zielen S, Wahn U0. Safety of anti-IgE treatment with omalizumab in children with seasonal allergic rhinitis undergoing specific immunotherapy simultaneously. Pediatr Allergy Immunol. 2010;21:e160–5.PubMedCrossRefGoogle Scholar
  94. 94.
    Büyüköztürk S, Gelincik A, Demirtürk M, Kocaturk E, Colakoğlu B, Dal M. Omalizumab markedly improves urticaria activity scores and quality of life scores in chronic spontaneous urticaria patients: A real life survey. J Dermatol. 2012;39:439–42.PubMedCrossRefGoogle Scholar
  95. 95.
    Pevec B, Radulovicpevec M, Stipicmarkovic A, Batista I, Rijavec M, Silar M, Kosnik M, Korosec P. House dust mite-specific immunotherapy alters the basal expression of t regulatory and FcεRI pathway genes. Int Arch Allergy Immunol. 2012;159:287–96.PubMedCrossRefGoogle Scholar
  96. 96.
    Assier E, Semerano L, Duvallet E, Delavallée L, Bernier E, Laborie M, Grouard-Vogel G, Larcier P, Bessis N, Boissier M-C. Modulation of anti-tumor necrosis factor alpha (TNF-α) antibody secretion in mice immunized with TNF-α kinoid. Clin Vaccine Immunol. 2012;19:699–703.PubMedCrossRefGoogle Scholar
  97. 97.
    Röcken M, Schallreuter K, Renz H, Szentivanyi A. What exactly is “atopy”? Exp Dermatol. 1998;7:97–104.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Duke University, Division of Rheumatology and ImmunologyDurhamUSA

Personalised recommendations