Current Allergy and Asthma Reports

, Volume 12, Issue 5, pp 402–412

Therapeutic Strategies for Harnessing Human Eosinophils in Allergic Inflammation, Hypereosinophilic Disorders, and Cancer

  • Zhaleh J. Amini-Vaughan
  • Margarita Martinez-Moczygemba
  • David P. Huston
Immune Deficiency and Dysregulation (DP Huston, Section Editor)

Abstract

The eosinophil is a multifunctional granulocyte best known for providing host defense against parasites. Paradoxically, eosinophils are also implicated in the pathogenesis of allergic inflammation, asthma, and hypereosinophilic syndromes. Emerging evidence also supports the potential for harnessing the cytotoxic power of eosinophils and redirecting it to kill solid tumors. Central to eosinophil physiology is interleukin-5 (IL-5) and its receptor (IL-5R) which is composed of a ligand-specific alpha chain (IL-5Rα) and the common beta chain (βc). Eosinophil activation can lead to their degranulation, resulting in rapid release of an arsenal of tissue-destructive proinflammatory mediators and cytotoxic proteins that can be both beneficial and detrimental to the host. This review discusses eosinophil immunobiology and therapeutic strategies for targeting of IL-5 and IL-5R, as well as the potential for harnessing eosinophil cytotoxicity as a tumoricide.

Keywords

Eosinophil Interleukin-5 (IL-5) IL-5 receptor (IL-5R) Anti–IL-5 antibodies Anti-IL-5R antibodies Allergic inflammation Asthma Eosinophilic syndromes Cancer Therapeutic Treatment Hypereosinophilic disorders 

References

Papers of particular interest, published recently, have been highlighted as:• Of importance

  1. 1.
    Rothenberg ME, Hogan SP. The eosinophil. Annu Rev Immunol. 2006;24:147–74.PubMedCrossRefGoogle Scholar
  2. 2.
    Hogan SP, Rosenberg HF, Moqbel R, et al. Eosinophils: biological properties and role in health and disease. Clin Exp Allergy. 2008;38(5):709–50.PubMedCrossRefGoogle Scholar
  3. 3.
    Blanchard C, Rothenberg ME. Biology of the eosinophil. Adv Immunol. 2009;101:81–121.PubMedCrossRefGoogle Scholar
  4. 4.
    • Shamri R, Xenakis JJ, Spencer LA. Eosinophils in innate immunity: an evolving story. Cell Tissue Res. 2011;343(1):57–83. This comprehensive review of eosinophil biology describes the complex role of eosinophils in innate immunity. PubMedCrossRefGoogle Scholar
  5. 5.
    Gleich GJ, Adolphson CR, Leiferman KM. The biology of the eosinophilic leukocyte. Annu Rev Med. 1993;44:85–101.PubMedCrossRefGoogle Scholar
  6. 6.
    Arai KI, Lee F, Miyajima A, et al. Cytokines: coordinators of immune and inflammatory responses. Annu Rev Biochem. 1990;59:783–836.PubMedCrossRefGoogle Scholar
  7. 7.
    Miyajima AT, Kitamura N, Harada T, Yokota T, Arai K. Cytokine receptors and signal transduction. Annu Rev Immunol. 1992;10:295–331.PubMedCrossRefGoogle Scholar
  8. 8.
    Komiya A, Nagase H, Yamada H, et al. Concerted expression of eotaxin-1, eotaxin-2, and eotaxin-3 in human bronchial epithelial cells. Cell Immunol. 2003;225(2):91–100.PubMedCrossRefGoogle Scholar
  9. 9.
    Amerio P, Frezzolini A, Feliciani C, et al. Eotaxins and CCR3 receptor in inflammatory and allergic skin diseases: therapeutical implications. Curr Drug Targets Inflamm Allergy. 2003;2(1):81–94.PubMedCrossRefGoogle Scholar
  10. 10.
    Halwani R, Al-Muhsen S, Al-Jahdali H, Hamid Q. Role of transforming growth factor-β in airway remodeling in asthma. Am J Respir Cell Mol Biol. 2011;44:127–33.PubMedCrossRefGoogle Scholar
  11. 11.
    Moore B, Murphy RF, Agrawal DK. Interaction of tgf-beta with immune cells in airway disease. Curr Mol Med. 2008;8(5):427–36.PubMedCrossRefGoogle Scholar
  12. 12.
    Klion AD, Nutman TB. The role of eosinophils in host defense against helminth parasites. J Allergy Clin Immunol. 2004;113(1):30–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Lotfi R, Lee JJ, Lotze MT. Eosinophilic granulocytes and damage-associated molecular pattern molecules (DAMPs): role in the inflammatory response within tumors. J Immunother. 2007;30:16–28.PubMedCrossRefGoogle Scholar
  14. 14.
    Shin MH, Lee YA, Min DY. Eosinophil-mediated tissue inflammatory responses in helminth infection. Korean J Parasitol. 2009;47(Suppl):S125–31.PubMedCrossRefGoogle Scholar
  15. 15.
    Kvarnhammar AM, Cardell LO. Pattern recognition receptors in human eosinophils. Immunology. 2012;136(1):11–20.PubMedCrossRefGoogle Scholar
  16. 16.
    Cohn L, Elias JA, Chupp GL. Asthma: mechanisms of disease persistence and progression. Annu Rev Immunol. 2004;22:789–815.PubMedCrossRefGoogle Scholar
  17. 17.
    Foster PS, Mould AW, Yang M, et al. Elemental Signals regulating eosinophil accumulation in the lung. Immunol Rev. 2001;179:173–81.PubMedCrossRefGoogle Scholar
  18. 18.
    Lee JJ, Dimina D, Macias MP, et al. Defining a link with asthma in mice congenitally deficient in eosinophils. Science. 2004;305(5691):1773–76.PubMedCrossRefGoogle Scholar
  19. 19.
    Humbles AA, Lloyd CM, McMillan SJ, et al. A critical role for eosinophils in allergic airway remodeling. Science. 2004;305(5691):1776–79.PubMedCrossRefGoogle Scholar
  20. 20.
    Cho JY, Miller M, Baek KJ, et al. Inhibition of airway remodeling in IL-5-deficient mice. J Clin Invest. 2004;113:551–60.PubMedGoogle Scholar
  21. 21.
    Robinson DS, Hamid Q, Ying S, et al. Predominant TH2-like brochoalveolar T-lymphocyte population in atopic asthma. N Engl J Med. 1992;326:298–304.PubMedCrossRefGoogle Scholar
  22. 22.
    Hamelmann E, Oshiba A, Loader J, et al. Antiinterleukin-5 antibody prevents airway hyperresponsiveness in a murine model of airway sensitization. Am J Respir Crit Care Med. 1997;155:819–25.PubMedGoogle Scholar
  23. 23.
    Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med. 1996;183:195–201.PubMedCrossRefGoogle Scholar
  24. 24.
    Lee JJ, McGarry MP, Farmer SC, et al. Interleukin-5 expression in the lung epithelium of transgenic mice leads to pulmonary changes pathognomonic of asthma. J Exp Med. 1997;185:2143–56.PubMedCrossRefGoogle Scholar
  25. 25.
    Klion AD. Hypereosinophilic syndrome: current approach to diagnosis and treatment. Annu Rev Med. 2009;60:293–306.PubMedCrossRefGoogle Scholar
  26. 26.
    • Simon HU, Rothenberg ME, Bochner BS, et al. Refining the definition of hypereosinophilic syndrome. J Allergy Clin Immunol. 2010;126(1):45–9. This article discusses the shortcomings of the old HES definition and proposes new considerations for HES classification. PubMedCrossRefGoogle Scholar
  27. 27.
    • Valent P, Klion AD, Horny HP, et al. Contemporary consensus proposal on criteria and classification of eosinophilic disorders and related syndromes. J Allergy Clin Immunol. 2012; [Epub ahead of print]. An expert group of immunology, allergy, hematology, and pathology experts propose updated and refined criteria for the classification of eosinophilic disorders and related syndromes in this manuscript. Google Scholar
  28. 28.
    Hogan SP, Rothenberg ME. Eosinophil function in eosinophil-associated gastrointestinal disorders. Curr Allergy Asthma Rep. 2006;6(1):65–71.PubMedCrossRefGoogle Scholar
  29. 29.
    DeBrosse CW, Rothenberg ME. Allergy and eosinophil-associated gastrointestinal disorders (EGID). Curr Opin Immunol. 2008;20(6):703–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Dellon ES. Eosinophilic esophagitis: diagnostic tests and criteria. Curr Opin Gastroenterol. 2012;28(4):382–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Mishra A, Hogan SP, Brandt EB, Rothenberg ME. An etiological role for aeroallergens and eosinophils in experimental esophagitis. J Clin Invest. 2001;107(1):83–90.PubMedCrossRefGoogle Scholar
  32. 32.
    Pagnoux C, Guilpain P, Guillevin L. Churg-Strauss syndrome. Curr Opin Rheumatol. 2007;19(1):25–32.PubMedCrossRefGoogle Scholar
  33. 33.
    Baldini C, Talarico R, Della Rossa A, Bombardieri S. Clinical manifestations and treatment of Churg-Strauss syndrome. Rheum Dis Clin North Am. 2010;36:527–43.PubMedCrossRefGoogle Scholar
  34. 34.
    Blaiss MS. Expanding the evidence base for the medical treatment of nasal polyposis. J Allergy Clin Immunol. 2005;116:1272–4.PubMedCrossRefGoogle Scholar
  35. 35.
    Palm NW, Rosenstein RK, Medzhitov R. Allergic host defences. Nature. 2012;484(7395):465–72.PubMedCrossRefGoogle Scholar
  36. 36.
    • Lee JJ, Jacobsen EA, McGarry MP, Schleimer RP, Lee NA. Eosinophils in health and disease: the LIAR hypothesis. Clin Exp Allergy. 2010;40(4):563–75. This provocative review challenges current dogma classifying eosinophils as simply end-stage effector cells and proposes a novel, counter concept in which accumulating tissue eosinophils are actually regulators of Local Immunity And/or Remodeling/Repair in both health and disease - the LIAR hypothesis. PubMedCrossRefGoogle Scholar
  37. 37.
    Mattes J, Foster PS. Regulation of eosinophil migration and Th2 cell function by IL-5 and eotaxin. Curr Drug Targets Inflamm Allergy. 2003;2(2):169–74.PubMedCrossRefGoogle Scholar
  38. 38.
    Bazan JF. Haemopoetic receptors and helical cytokines. Immunol Today. 1990;10:350–54.CrossRefGoogle Scholar
  39. 39.
    Dickason RR, Huston MM, Huston DP. Delineation of IL-5 domains, predicted to engage the IL-5 receptor complex. J Immunol. 1996;156:1030–7.PubMedGoogle Scholar
  40. 40.
    Carr PD, Conlan F, Ford S, Ollis DL, Young IG. An improved resolution structure of the human β common receptor involved in IL-3, IL-5 and GM-CSF signaling which gives better definition of the high-affinity binding epitope. Acta Crystallogr F Struct Biol Crystallogr Commun. 2006;62(6):509–13.CrossRefGoogle Scholar
  41. 41.
    • Patino E, Kotzsch A, Saremba S, et al. Structure analysis of the IL-5 ligand-receptor complex reveals a wrench-like architecture for IL-5Rα. Structure 2011, 19(12):1864-75. This seminal study reports the crystal structure of IL-5 bound to the IL-5Ra extracellular domain. Structural analysis of the IL-5Ra reveals a wrench-like architecture that is likely preferred. Google Scholar
  42. 42.
    Hansen G, Hercus TR, McClure BJ, et al. The structure of the GM-CSF receptor complex reveals a distinct mode of cytokine receptor activation. Cell. 2008;134(3):496–507.PubMedCrossRefGoogle Scholar
  43. 43.
    Kolbeck R, Kozhich A, Koike M, et al. MEDI-563, a humanized anti-IL-5 receptor α mAb with enhanced antibody-dependent cell-mediated cytotoxicity function. J Allergy Clin Immunol. 2010;125(6):1344–53.PubMedCrossRefGoogle Scholar
  44. 44.
    Martinez-Moczygemba M, Huston DP. Biology of Common β receptor-signalling cytokine: IL-3, IL-5 and GM-CSF. J Allergy Clin Immunol. 2003;112:653–65.PubMedCrossRefGoogle Scholar
  45. 45.
    Shardonofsky FR, Venzor 3rd J, Barrios R, et al. Therapeutic efficacy of an anti-IL-5 monoclonal antibody delivered into the respiratory tract in a murine model of asthma. J Allergy Clin Immunol. 1999;104:215–21.PubMedCrossRefGoogle Scholar
  46. 46.
    Zhang JI, Kuvelkar R, Murgolo J, et al. Mapping and characterization of the epitopes of Sch 55700, a humanized mAb, that inhibits human IL-5. Int Immunol. 1999;11(12):1935–43.PubMedCrossRefGoogle Scholar
  47. 47.
    Hart TK, Cook RM, Zia-Amirhosseini P, et al. Preclinical efficacy and safety of mepolizumab (SB-240563), a humanized monoclonal antibody to IL-5, in cynomolgus monkeys. J Allergy Clinical Immunol. 2001;108(2):250–7.CrossRefGoogle Scholar
  48. 48.
    Egan RW, Athwahl D, Chou CC, et al. Pulmonary biology of anti-interleukin 5 antibodies. Mem Inst Oswaldo Cruz. 1997;92:69–73.PubMedCrossRefGoogle Scholar
  49. 49.
    Flood-Page P, Swenson C, Faiferman I, et al. A study to evaluate safety and efficacy of mepolizumab in patients with moderate persistent asthma. Am J Respir Crit Care Med. 2007;176(11):1062–71.PubMedCrossRefGoogle Scholar
  50. 50.
    Leckie MJ, ten Brinke A, Khan J, et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet. 2000;356(9248):2144–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Nair P, Pizzichini MMM, Kjarsgaard M, et al. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. NEJM. 2009;360:985–93.PubMedCrossRefGoogle Scholar
  52. 52.
    Haldar P, Brightling CE, Hargadon B, et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. NEJM. 2009;360:973–84.PubMedCrossRefGoogle Scholar
  53. 53.
    Gevaert P, Van Bruaene N, Cattaert T, et al. Mepolizumab, a humanized anti-IL-5 mAb, as a treatment option for severe nasal polyposis. J Allergy Clin Immunol. 2011;128(5):989–95.PubMedCrossRefGoogle Scholar
  54. 54.
    Rothenberg ME, Klion AD, Roufosse FE, et al. Treatment of patients with the hypereosinophilic syndrome with mepolizumab. NEJM. 2008;358(12):1215–28.PubMedCrossRefGoogle Scholar
  55. 55.
    Roufosse F, de Lavareille A, Schandené L, et al. Mepolizumab as a corticosteroid-sparing agent in lymphocytic variant hypereosinophilic syndrome. J Allergy Clin Immunol. 2010;126(4):826–35.CrossRefGoogle Scholar
  56. 56.
    Stein ML, Collins MH, Villanueva JM, et al. Anti-IL-5 (mepolizumab) therapy for eosinophilic esophagitis. J Allergy CLin Immunol. 2006;118(6):1312–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Straumann A, Conus S, Grzonka P, et al. Anti-interleukin-5 antibody treatment (mepolizumab) in active eosinophilic oesophagitis: a randomized, placebo-controlled, double-blind trial. Gut. 2010;59:21–30.PubMedCrossRefGoogle Scholar
  58. 58.
    Assa’ad AH, Gupta SK, Collins MH, et al. An antibody against IL-5 reduces numbers of esophageal intraepithelial eosinophils in children with eosinophilic esophagitis. Gastroenterology. 2011;141(5):1593–604.PubMedCrossRefGoogle Scholar
  59. 59.
    Kahn JE, Grandpeix-Guyodo C, Marroun I, et al. Sustained response to mepolizumab in refractory Churg-Strauss syndrome. J Allergy Clin Immunol. 2010;125:267–70.PubMedCrossRefGoogle Scholar
  60. 60.
    Kim S, Marigowda G, Oren E, Israel E, Wechsler M. Mepolizumab as a steroid-sparing treatment option in patients with Churg-Strauss syndrome. J Allergy Clin Immunol. 2010;125:1336–43.PubMedCrossRefGoogle Scholar
  61. 61.
    Oldhoff JM, Darsow U, Werfel T, et al. Anti-IL-5 recombinant humanized monoclonal antibody (mepolizumab) for the treatment of atopic dermatitis. Allergy. 2005;60(5):693–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Oldhoff JM, Darsow U, Werfel T, et al. No effect of anti-interleukin-5 therapy (mepolizumab) on the atopy patch test in atopic dermatitis patients. Int Arch Allergy Immunol. 2006;141:290–4.PubMedCrossRefGoogle Scholar
  63. 63.
    Kips JC, O’Conner BJ, Langley SJ, Woodcock A. Effect of SCH55700, a humanized anti-human interleukin-5 antibody, in severe persistent asthma: A pilot study. Am J Resp Crit Med. 2003;167(12):1655–59.CrossRefGoogle Scholar
  64. 64.
    Castro M, Mathur S, Hargreave F, et al. Reslizumab for poorly controlled, eosinophilic asthma: A randomized, placebo controlled study. Am J Resp Crit Med. 2011;184:1125–32.CrossRefGoogle Scholar
  65. 65.
    Klion AD, Law MA, Noel P, et al. Safety and efficacy of the monoclonal anti-interleukin-% antibody SCH55700 in the treatment of patients with hypereosinophilic syndrome. Blood. 2004;103:2939–41.PubMedCrossRefGoogle Scholar
  66. 66.
    Spergel JM, Rothenberg ME, Collins MH, et al. Reslizumab in children and adolescents with eosinophilic esophagitis: Results of a double blind, randomized, placebo-controlled trial. J Allergy Clin Immunol. 2012;129(2):456–63.PubMedCrossRefGoogle Scholar
  67. 67.
    NIAID. A randomized, placebo-controlled, double-blind pilot study of single-dose humanized anti-IL5 antibody (reslizumab) for the reduction of eosinophilia following diethylcarbamazine treatment of Loa Loa infection. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2012 May 17]. Available from: http://clinicaltrials.gov/ct2/show/NCT01111305?term=reslizumab&rank=9 NLM Identifier: NCT01111305.
  68. 68.
    Devos R, Guisez Y, Plaetinck G, et al. Covalent modification of the interleukin-5 receptor by isothiazolones leads to inhibition of the binding of interleukin-5. Eur J Biochem. 1994;225(2):635–40.PubMedCrossRefGoogle Scholar
  69. 69.
    Busse WW, Katial R, Gossage D, et al. Safety profile, pharmacokinetics, and biologic activity of MEDI-563, and anti-IL-5 receptor alpha antibody, in a phase I study of subjects with mild asthma. J Allergy Clin Immunol. 2010;125:1237–44.PubMedCrossRefGoogle Scholar
  70. 70.
    Gauvreau GM, Pageau R, Seguin R, et al. Dose–response effects of TPI ASM8 in asthmatics after allergen. Allergy. 2011;66:1242–8.PubMedCrossRefGoogle Scholar
  71. 71.
    MedImmune LLC. A Study to Evaluate the Effectiveness of a Drug (MEDI-563) in Subjects With Chronic Obstructive Pulmonary Disease (COPD). In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2012 May 17]. Available from: http://clinicaltrials.gov/ct2/show/NCT01227278?term=MEDI-563&rank=5 NLM Identifier: NCT01227278.
  72. 72.
    Asquith KL, Ramshaw HS, Hansbro PM, et al. The IL-3/IL-5/GM-CSF common receptor plays a pivotal role in the regulation of Th2 immunity and allergic airway inflammation. J Immunol. 2008;180:1199–206.PubMedGoogle Scholar
  73. 73.
    Martinez-Moczygemba M, Huston DP. Immune dysregulation in the pathogenesis of pulmonary alveolar proteinosis. Cur Allergy Asthma Rep. 2010;10:320–5.CrossRefGoogle Scholar
  74. 74.
    Dorta RG, Landman G, Kowalski LP, et al. Tumour-associated tissue eosinophilia as a prognostic factor in oral squamous cell carcinomas. Histopathology. 2002;41(2):152–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Pretlow TP, Keith EF, Cryar AK, et al. Eosinophil infiltration of human colonic carcinomas as a prognostic indicator. Cancer Res. 1983;43:2997–3000.PubMedGoogle Scholar
  76. 76.
    Goldsmith MM, Belchis DA, Cresson DH, MerrittWD III, Askin FB. The importance of the eosinophil in head and neck cancer. Otolaryngol Head Neck Surg. 1992;106:27–33.PubMedGoogle Scholar
  77. 77.
    Ownby HE, Roi LD, Isenberg RR, Brennan MJ. Peripheral lymphocyte and eosinophil counts as indicators of prognosis in primary breast cancer. Cancer. 1983;52:126–30.PubMedCrossRefGoogle Scholar
  78. 78.
    Leighton SE, Teo JG, Leung SF, et al. Prevalence and prognostic significance of tumor-associated tissue eosinophilia in nasopharyngeal carcinoma. Cancer. 1996;77(3):436–40.PubMedCrossRefGoogle Scholar
  79. 79.
    Fernandez-Acenero MJ, Galindo-Gallego M, Sanz J, Aljama A. Prognostic influence of tumor-associated eosinophilic infiltrate in colorectal carcinoma. Cancer. 2000;88:1544–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Iwasaki K, Torisu M, Fujimura T. Malignant tumor and eosinophils. I. Prognostic significance in gastric cancer. Cancer. 1986;58:1321–7.PubMedCrossRefGoogle Scholar
  81. 81.
    van Driel WJ, Kievit-Tyson P, van den Broek, et al. Presence of an eosinophilic infiltrate in cervical squamous carcinoma results from a type 2 immune response. Gynecol Oncol. 1999;74:188–95.PubMedCrossRefGoogle Scholar
  82. 82.
    Ishibashi S, Ohashi Y, Suzuki T, et al. Tumor-associated tissue eosinophilia in human esophageal squamous cell carcinoma. Anticancer Res. 2006;26:1419–24.PubMedGoogle Scholar
  83. 83.
    Wong DTW, Bowen SM, Elovic A, Gallagher GT, Weller PF. Eosinophil ablation and tumor development. Oral Oncol. 1999;35:496–501.PubMedCrossRefGoogle Scholar
  84. 84.
    Gordon S, Martinez FO. Alternative activation of macrophages: mechanisms and functions. Nat Rev Immunol. 2003;3(1):23–5.PubMedCrossRefGoogle Scholar
  85. 85.
    Sica A, Mantovani A. Macrophage diversity and polarization: in vivo veritas. J Am Soc Hemat. 2006;108(2):408–9.Google Scholar
  86. 86.
    Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in tumour angiogenesis. Nature Rev Cancer. 2008;8:618–31.CrossRefGoogle Scholar
  87. 87.
    Puxeddu I, Alian A, Piliponsky AM, et al. Human peripheral blood eosinophils induce angiogenesis. Int J Biochem Cell Biol. 2005;37:628–36.PubMedCrossRefGoogle Scholar
  88. 88.
    Wong DT, Weller PF, Galli SJ, et al. Human eosinophils express transforming growth factor alpha. J Exp Med. 1990;172:673–81.PubMedCrossRefGoogle Scholar
  89. 89.
    Hoshino M, Takahashi M, Aoike N. Expression of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin immunoreactivity in asthmatic airways and its relationship to angiogenesis. J Allergy Clin Immunol. 2001;107:295–301.PubMedCrossRefGoogle Scholar
  90. 90.
    Kita H, Ohnishi T, Okubo Y, et al. Granulocyte/macrophage colony-stimulating factor and interleukin 3 release from human peripheral blood eosinophils and neutrophils. J Exp Med. 1991;174:745–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Ohno I, Ohtani H, Nitta Y, et al. Eosinophils as a source of matrix metalloproteinase-9 in asthmatic airway inflammation. Am J Respir Cell Mol Biol. 1997;16(3):212–9.PubMedGoogle Scholar
  92. 92.
    Mattes J, Hulett M, Xie W, et al. Immunotherapy of cytotoxic T cell resistant tumors by T helper 2 cells: an eotaxin and STAT 6-dependent process. J Exp Med. 2003;197:387–93.PubMedCrossRefGoogle Scholar
  93. 93.
    Simson L, Ellyard JI, Dent LA, et al. Regulation of carcinogenesis by IL-5 and CCL11: a potential role for eosinophils in tumor surveillance. J Immunol. 2007;178(7):4222–9.PubMedGoogle Scholar
  94. 94.
    Cormier SA, Taranova AG, Bedient C, et al. Pivotal advance: eosinophil infiltration of solid tumors is an early and persistent inflammatory host response. J Leukoc Biol. 2006;9:1131–9.CrossRefGoogle Scholar
  95. 95.
    • Legrand F, Driss V, Delbeke M, et al. Human Eosinophils exert TNFa and Granzyme A-mediated tumorcidal activity toward colon carcinoma cells. J Immunol. 2010;185(12):7443–51. This manuscript provides the first mechanistic evidence for innate responses of eosinophils against colon carcinoma cells. PubMedCrossRefGoogle Scholar
  96. 96.
    Wasserman SI, Goetzl EJ, Ellman L, Austen KF. Tumor associated eosinophilotactic factor. NEJM. 1974;290:420–4.PubMedCrossRefGoogle Scholar
  97. 97.
    Cherry BW, Yoon J, Bartemes KR, Iijima K, Kita H. A novel IL-1 family cytokine, IL-33, potently activates human eosinophils. J Allergy Clin Immunol. 2008;121(6):1484.PubMedCrossRefGoogle Scholar
  98. 98.
    Carlson M, Peterson C, Venge P. The influence of IL-3, IL-5, and GM-CSF on normal human eosinophil and neutrophil C3b-induced degranulation. Allergy. 1993;48(6):437–42.PubMedGoogle Scholar
  99. 99.
    Pleass RJ, Lang ML, Kerr MA, Woof JM. IgA is a more potent inducer of NADPH oxidase activation and degranulation in blood eosinophils than IgE. Mol Immunol. 2007;44:1401–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Zhaleh J. Amini-Vaughan
    • 1
  • Margarita Martinez-Moczygemba
    • 1
  • David P. Huston
    • 1
  1. 1.Departments of Microbial and Molecular Pathogenesis and Medicine, Texas A&M College of MedicineClinical Science and Translational Research Institute, Texas A&M Health Science CenterHoustonUSA

Personalised recommendations