Current Allergy and Asthma Reports

, Volume 10, Issue 1, pp 67–73

Update on Infection and Antibiotics in Asthma

  • Donald R. Rollins
  • David A. Beuther
  • Richard J. Martin
Article

Abstract

Asthma pathogenesis seems to be a result of a complex mixture of genetic and environmental influences. There is evidence that Mycoplasma pneumoniae and Chlamydophila pneumoniae (formerly known as Chlamydia pneumoniae) play a role in promoting airway inflammation that could contribute to the onset and clinical course of asthma. Evidence also indicates that when antimicrobial therapy can eradicate or suppress these organisms, it may be possible to alter the course of the disease. Certain macrolide antibiotics have been shown to improve control of asthma symptoms and lung function in patients diagnosed with acute C. pneumoniae or M. pneumoniae infection. Positive polymerase chain reaction studies for C. pneumoniae or M. pneumoniae are needed to select asthma patients for chronic treatment. Macrolide antibiotics may also have independent anti-inflammatory activity that may be useful in the management of asthma and other inflammatory diseases.

Keywords

Asthma Infection M. pneumoniae C. pneumoniae 

References

Papers of particular interest, published recently, have been highlighted as:• Of importance •• Of major importance

  1. 1.
    Biscardi S, Lorrot M, Marc E, et al.: Mycoplasma pneumoniae and asthma in children. Clin Infect Dis 2004, 38:1341–1346.CrossRefPubMedGoogle Scholar
  2. 2.
    Bisgaard H, Hermansen MN, Buchvald F, et al.: Childhood asthma after bacterial colonization of the airway in neonates. N Engl J Med 2007, 357:1487–1495.CrossRefPubMedGoogle Scholar
  3. 3.
    Emre U, Sokolovskaya N, Roblin PM, et al.: Detection of anti-Chlamydia pneumoniae IgE in children with reactive airway disease. J Infect Dis 1995, 172:265–267.PubMedGoogle Scholar
  4. 4.
    Gil JC, Cedillo RL, Mayagoitia BG, et al.: Isolation of Mycoplasma pneumoniae from asthmatic patients. Ann Allergy 1993, 70:23–25.PubMedGoogle Scholar
  5. 5.
    Kraft M, Cassell GH, Pak J, et al.: Mycoplasma pneumoniae and Chlamydia pneumoniae in asthma: effect of clarithromycin. Chest 2002, 121:1782–1788.CrossRefPubMedGoogle Scholar
  6. 6.
    Martin RJ, Kraft M, Chu HW, et al.: A link between chronic asthma and chronic infection. J Allergy Clin Immunol 2001, 107:595–601.CrossRefPubMedGoogle Scholar
  7. 7.
    Blasi F, Johnston SL: The role of antibiotics in asthma. Int J Antimicrob Agents 2007, 29:485–493.CrossRefPubMedGoogle Scholar
  8. 8.
    Johnston SL, Martin RJ: Chlamydophila pneumoniae and Mycoplasma pneumoniae: a role in asthma pathogenesis? Am J Respir Crit Care Med 2005, 172:1078–1089.CrossRefPubMedGoogle Scholar
  9. 9.
    •• Sutherland ER, Martin RJ: Asthma and atypical bacterial infection. Chest 2007, 132:1962–1966. This is an excellent review of important research linking M. pneumoniae and C. pneumoniae to persistent asthma pathogeneis and concerning the benefit of treatment with macrolide antibiotics.CrossRefPubMedGoogle Scholar
  10. 10.
    Bradding P, Walls AF, Holgate ST: The role of the mast cell in the pathophysiology of asthma. J Allergy Clin Immunol 2006, 117:1277–1284.CrossRefPubMedGoogle Scholar
  11. 11.
    Hanania NA: Targeting airway inflammation in asthma: current and future therapies. Chest 2008, 133:989–998.CrossRefPubMedGoogle Scholar
  12. 12.
    Bisgaard H, Flores-Nunez A, Goh A, et al.: Study of montelukast for the treatment of respiratory symptoms of post-respiratory syncytial virus bronchiolitis in children. Am J Respir Crit Care Med 2008, 178:854–860.CrossRefPubMedGoogle Scholar
  13. 13.
    Jackson DJ, Gangnon RE, Evans MD, et al.: Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children. Am J Respir Crit Care Med 2008, 178:667–672.CrossRefPubMedGoogle Scholar
  14. 14.
    Wos M, Sanak M, Soja J, et al.: The presence of rhinovirus in lower airways of patients with bronchial asthma. Am J Respir Crit Care Med 2008, 177:1082–1089.CrossRefPubMedGoogle Scholar
  15. 15.
    Caudri D, Wijga A, Scholtens S, et al.: Early daycare is associated with an increase in airway symptoms in early childhood but is no protection against asthma or atopy at 8 years. Am J Respir Crit Care Med 2009, 180:491–498.CrossRefPubMedGoogle Scholar
  16. 16.
    Wark PA, Johnston SL, Bucchieri F, et al.: Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J Exp Med 2005, 201:937–947.CrossRefPubMedGoogle Scholar
  17. 17.
    Esposito S, Principi N: Asthma in children: are chlamydia or mycoplasma involved? Paediatr Drugs 2001, 3:159–168.CrossRefPubMedGoogle Scholar
  18. 18.
    Berkovich S, Millian SJ, Snyder RD: The association of viral and mycoplasma infections with recurrence of wheezing in the asthmatic child. Ann Allergy 1970, 28:43–49.PubMedGoogle Scholar
  19. 19.
    Denlinger LC, Shi L, Guadarrama A, et al.: Attenuated P2X7 pore function as a risk factor for virus-induced loss of asthma control. Am J Respir Crit Care Med 2009, 179:265–270.CrossRefPubMedGoogle Scholar
  20. 20.
    Baseman JB, Tully JG: Mycoplasmas: sophisticated, reemerging, and burdened by their notoriety. Emerg Infect Dis 1997, 3:21–32.CrossRefPubMedGoogle Scholar
  21. 21.
    Andersen P: Pathogenesis of lower respiratory tract infections due to Chlamydia, Mycoplasma, Legionella and viruses. Thorax 1998, 53:302–307.CrossRefPubMedGoogle Scholar
  22. 22.
    Kraft M, Cassell GH, Henson JE, et al.: Detection of Mycoplasma pneumoniae in the airways of adults with chronic asthma. Am J Respir Crit Care Med 1998, 158:998–1001.PubMedGoogle Scholar
  23. 23.
    Chu HW, Honour JM, Rawlinson CA, et al.: Effects of respiratory Mycoplasma pneumoniae infection on allergen-induced bronchial hyperresponsiveness and lung inflammation in mice. Infect Immun 2003, 71:1520–1526.CrossRefPubMedGoogle Scholar
  24. 24.
    Chu HW, Rino JG, Wexler RB, et al.: Mycoplasma pneumoniae infection increases airway collagen deposition in a murine model of allergic airway inflammation. Am J Physiol Lung Cell Mol Physiol 2005, 289:L125–L133.CrossRefPubMedGoogle Scholar
  25. 25.
    Gonzales R, Steiner JF, Sande MA: Antibiotic prescribing for adults with colds, upper respiratory tract infections, and bronchitis by ambulatory care physicians. JAMA 1997, 278:901–904.CrossRefPubMedGoogle Scholar
  26. 26.
    McCaig LF, Hughes JM: Trends in antimicrobial drug prescribing among office-based physicians in the United States. JAMA 1995, 273:214–219.CrossRefPubMedGoogle Scholar
  27. 27.
    Hirschmann JV: Antibiotics for common respiratory tract infections in adults. Arch Intern Med 2002, 162:256–264.CrossRefPubMedGoogle Scholar
  28. 28.
    Graham VA, Milton AF, Knowles GK, et al.: Routine antibiotics in hospital management of acute asthma. Lancet 1982, 1:418–420.CrossRefPubMedGoogle Scholar
  29. 29.
    Shapiro GG, Eggleston PA, Pierson WE, et al.: Double-blind study of the effectiveness of a broad spectrum antibiotic in status asthmaticus. Pediatrics 1974, 53:867–872.PubMedGoogle Scholar
  30. 30.
    Johnston SL, Blasi F, Black PN, et al.: The effect of telithromycin in acute exacerbations of asthma. N Engl J Med 2006, 354:1589–1600.CrossRefPubMedGoogle Scholar
  31. 31.
    •• Krishnan JA, Nowak R, Davis SQ, et al.: Anti-inflammatory treatment after discharge home from the emergency department in adults with acute asthma. Proc Am Thorac Soc 2009, 6:380–385. This is a review of 37 controlled trials of outpatient treatment of acute asthma exacerbations comparing different treatment programs. It includes a review of the study by Johnston et al. [30].CrossRefPubMedGoogle Scholar
  32. 32.
    Michels N, Chu HW, LaFasto S, et al.: Mast cells mediate Mycoplasma pneumoniae clearance after acute infection. Am J Respir Crit Care Med 2009 (in press).Google Scholar
  33. 33.
    Itkin IH, Menzel ML: The use of macrolide antibiotic substances in the treatment of asthma. J Allergy 1970, 45:146–162.CrossRefPubMedGoogle Scholar
  34. 34.
    Jaffe A, Bush A: Anti-inflammatory effects of macrolides in lung disease. Pediatr Pulmonol 2001, 31:464–473.CrossRefPubMedGoogle Scholar
  35. 35.
    Garey KW, Rubinstein I, Gotfried MH, et al.: Long-term clarithromycin decreases prednisone requirements in elderly patients with prednisone-dependent asthma. Chest 2000, 118:1826–1827.CrossRefPubMedGoogle Scholar
  36. 36.
    Yalcin E, Kiper N, Ozcelik U, et al.: Effects of claritromycin on inflammatory parameters and clinical conditions in children with bronchiectasis. J Clin Pharm Ther 2006, 31:49–55.CrossRefPubMedGoogle Scholar
  37. 37.
    Tahan F, Ozcan A, Koc N: Clarithromycin in the treatment of RSV bronchiolitis: a double-blind, randomised, placebo-controlled trial. Eur Respir J 2007, 29:91–97.CrossRefPubMedGoogle Scholar
  38. 38.
    Yamada T, Fujieda S, Mori S, et al.: Macrolide treatment decreased the size of nasal polyps and IL-8 levels in nasal lavage. Am J Rhinol 2000, 14:143–148.CrossRefPubMedGoogle Scholar
  39. 39.
    Simpson JL, Powell H, Boyle MJ, et al.: Clarithromycin targets neutrophilic airway inflammation in refractory asthma. Am J Respir Crit Care Med 2008, 177:148–155.CrossRefPubMedGoogle Scholar
  40. 40.
    Gibson PG, Simpson JL, Saltos N: Heterogeneity of airway inflammation in persistent asthma: evidence of neutrophilic inflammation and increased sputum interleukin-8. Chest 2001, 119:1329–1336.CrossRefPubMedGoogle Scholar
  41. 41.
    Labro MT, Abdelghaffar H: Immunomodulation by macrolide antibiotics. J Chemother 2001, 13:3–8.PubMedGoogle Scholar
  42. 42.
    Kawasaki S, Takizawa H, Ohtoshi T, et al.: Roxithromycin inhibits cytokine production by and neutrophil attachment to human bronchial epithelial cells in vitro. Antimicrob Agents Chemother 1998, 42:1499–1502.PubMedGoogle Scholar
  43. 43.
    Takizawa H, Desaki M, Ohtoshi T, et al.: Erythromycin suppresses interleukin 6 expression by human bronchial epithelial cells: a potential mechanism of its anti-inflammatory action. Biochem Biophys Res Commun 1995, 210:781–786.CrossRefPubMedGoogle Scholar
  44. 44.
    Fost DA, Leung DY, Martin RJ, et al.: Inhibition of methylprednisolone elimination in the presence of clarithromycin therapy. J Allergy Clin Immunol 1999, 103:1031–1035.CrossRefPubMedGoogle Scholar
  45. 45.
    Black PN: Anti-inflammatory effects of macrolide antibiotics. Eur Respir J 1997, 10:971–972.CrossRefPubMedGoogle Scholar
  46. 46.
    Periti P, Mazzei T, Mini E, et al.: Pharmacokinetic drug interactions of macrolides. Clin Pharmacokinet 1992, 23:106–131.CrossRefPubMedGoogle Scholar
  47. 47.
    Siracusa A, Brugnami G, Fiordi T, et al.: Troleandomycin in the treatment of difficult asthma. J Allergy Clin Immunol 1993, 92:677–682.CrossRefPubMedGoogle Scholar
  48. 48.
    Garey KW, Alwani A, Danziger LH, et al.: Tissue reparative effects of macrolide antibiotics in chronic inflammatory sinopulmonary diseases. Chest 2003, 123:261–265.CrossRefPubMedGoogle Scholar
  49. 49.
    Kroegel C, Rodel J, Mock B: Chlamydia pneumoniae, clarithromycin, and severe asthma. Chest 2001, 120:1035–1036.CrossRefPubMedGoogle Scholar
  50. 50.
    Kamada AK, Hill MR, Ikle DN, et al.: Efficacy and safety of low-dose troleandomycin therapy in children with severe, steroid-requiring asthma. J Allergy Clin Immunol 1993, 91:873–882.CrossRefPubMedGoogle Scholar
  51. 51.
    Nelson HS, Hamilos DL, Corsello PR, et al.: A double-blind study of troleandomycin and methylprednisolone in asthmatic subjects who require daily corticosteroids. Am Rev Respir Dis 1993, 147:398–404.PubMedGoogle Scholar
  52. 52.
    Ekici A, Ekici M, Erdemoglu AK: Effect of azithromycin on the severity of bronchial hyperresponsiveness in patients with mild asthma. J Asthma 2002, 39:181–185.CrossRefPubMedGoogle Scholar
  53. 53.
    Shimizu T, Kato M, Mochizuki H, et al.: Roxithromycin reduces the degree of bronchial hyperresponsiveness in children with asthma. Chest 1994, 106:458–461.CrossRefPubMedGoogle Scholar
  54. 54.
    Kamoi H, Kurihara N, Fujiwara H, et al.: The macrolide antibacterial roxithromycin reduces bronchial hyperresponsiveness and superoxide anion production by polymorphonuclear leukocytes in patients with asthma. J Asthma 1995, 32:191–197.CrossRefPubMedGoogle Scholar
  55. 55.
    Amayasu H, Yoshida S, Ebana S, et al.: Clarithromycin suppresses bronchial hyperresponsiveness associated with eosinophilic inflammation in patients with asthma. Ann Allergy Asthma Immunol 2000, 84:594–598.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Donald R. Rollins
    • 1
  • David A. Beuther
    • 1
  • Richard J. Martin
    • 1
  1. 1.Department of MedicineNational Jewish Health and the University of ColoradoDenverUSA

Personalised recommendations