Current Allergy and Asthma Reports

, Volume 9, Issue 6, pp 426–432

Personalized medicine: A pediatric perspective



The aim of pediatric personalized medicine is to uniquely combine genetic variation with developmental stage and environmental exposure to provide a tailored preventive, diagnostic, and therapeutic regimen. Recent advances in genomic research have identified many genetic variants that may be related to allergic and inflammatory disease and therapeutic response. These include variants involved in immune response, barrier proteins, and medication response. Current evidence also suggests that the effect of genetic variation often depends on the developmental stage of a child and environmental exposure such as infection or tobacco smoke during a specific stage. Personalized medicine is a new and exciting field with the potential to significantly improve medical care for children and adults.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Boat TF: The future of pediatric research. J Pediatr 2007, 151(5 Suppl):S21–S27.PubMedGoogle Scholar
  2. 2.
    Kearns GL, Abdel-Rahman SM, Alander SW, et al.: Developmental pharmacology—drug disposition, action, and therapy in infants and children. N Engl J Med 2003, 349:1157–1167.CrossRefPubMedGoogle Scholar
  3. 3.
    Moffatt MF, Kabesch M, Liang L, et al.: Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 2007, 448:470–473.CrossRefPubMedGoogle Scholar
  4. 4.
    Bouzigon E, Corda E, Aschard H, et al.: Effect of 17q21 variants and smoking exposure in early-onset asthma. N Engl J Med 2008, 359:1985–1994.CrossRefPubMedGoogle Scholar
  5. 5.
    Bisgaard H, Bonnelykke K, Sleiman PM, et al.: Chromosome 17q21 gene variants are associated with asthma and exacerbations but not atopy in early childhood. Am J Respir Crit Care Med 2009, 179:179–185.CrossRefPubMedGoogle Scholar
  6. 6.
    Kurt-Jones EA, Popova L, Kwinn L, et al.: Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 2000, 1:398–401.CrossRefPubMedGoogle Scholar
  7. 7.
    Lodrup Carlsen KC, Lovik M, Granum B, et al.: Soluble CD14 at 2 yr of age: gender-related effects of tobacco smoke exposure, recurrent infections and atopic diseases. Pediatr Allergy Immunol 2006, 17:304–312.CrossRefPubMedGoogle Scholar
  8. 8.
    Baldini M, Lohman IC, Halonen M, et al.: A polymorphism* in the 5’ flanking region of the CD14 gene is associated with circulating soluble CD14 levels and with total serum immunoglobulin E. Am J Respir Cell Mol Biol 1999, 20:976–983.PubMedGoogle Scholar
  9. 9.
    Martinez FD: CD14, endotoxin, and asthma risk: actions and interactions. Proc Am Thorac Soc 2007, 4:221–225.CrossRefPubMedGoogle Scholar
  10. 10.
    Smit LA, Siroux v, Bouzigon E, et al.: CD14 and Toll-like receptor gene polymorphisms, country living, and asthma in adults. Am J Respir Crit Care Med 2009, 179:363–368.CrossRefPubMedGoogle Scholar
  11. 11.
    Murray CS, Simpson A, Custovic A: Allergens, viruses, and asthma exacerbations. Proc Am Thorac Soc 2004, 1:99–104.CrossRefPubMedGoogle Scholar
  12. 12.
    Berce V, Repnik K, Potocnik U: Association of CCR5-delta32 mutation with reduced risk of nonatopic asthma in Slovenian children. J Asthma 2008, 45:780–784.CrossRefPubMedGoogle Scholar
  13. 13.
    Ungvari I, Tolgyesi G, Semsei AF, et al.: CCR5 Delta 32 mutation, Mycoplasma pneumoniae infection, and asthma. J Allergy Clin Immunol 2007, 119:1545–1547.CrossRefPubMedGoogle Scholar
  14. 14.
    Moller-Larsen S, Nyegaard M, Haagerup A, et al.: Association analysis identifies TLR7 and TLR8 as novel risk genes in asthma and related disorders. Thorax 2008, 63:1064–1069.CrossRefPubMedGoogle Scholar
  15. 15.
    Salam MT, Lin PC, Avol EL, et al.: Microsomal epoxide hydrolase, glutathione S-transferase P1, traffic and childhood asthma. Thorax 2007, 62:1050–1057.CrossRefPubMedGoogle Scholar
  16. 16.
    Chen E, Miller GE, Walker HA, et al.: Genome-wide transcriptional profiling linked to social class in asthma. Thorax 2009, 64:38–43.CrossRefPubMedGoogle Scholar
  17. 17.
    Howard TD, Whittaker PA, Zaiman AL, et al.: Identification and association of polymorphisms in the interleukin-13 gene with asthma and atopy in a Dutch population. Am J Respir Cell Mol Biol 2001, 25:377–384.PubMedGoogle Scholar
  18. 18.
    Kang MJ, Lee SY, Kim HB, et al.: Association of IL-13 polymorphisms with leukotriene receptor antagonist drug responsiveness in Korean children with exercise-induced bronchoconstriction. Pharmacogenet Genomics 2008, 18:551–558.PubMedCrossRefGoogle Scholar
  19. 19.
    Drazen JM, Yandava CN, Dube L, et al.: Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nat Genet 1999, 22:168–170.CrossRefPubMedGoogle Scholar
  20. 20.
    Telleria JJ, Blanco-Quiros A, varillas D, et al.: ALOX5 promoter genotype and response to montelukast in moderate persistent asthma. Respir Med 2008, 102:857–861.CrossRefPubMedGoogle Scholar
  21. 21.
    Dold S, Wjst M, von Mutius E, et al.: Genetic risk for asthma, allergic rhinitis, and atopic dermatitis. Arch Dis Child 1992, 67:1018–1022.CrossRefPubMedGoogle Scholar
  22. 22.
    Sandilands A, Terron-Kwiatkowski A, Hull PR, et al.: Comprehensive analysis of the gene encoding filaggrin uncovers prevalent and rare mutations in ichthyosis vulgaris and atopic eczema. Nat Genet 2007, 39:650–654.CrossRefPubMedGoogle Scholar
  23. 23.
    Palmer CN, Irvine AD, Terron-Kwiatkowski A, et al.: Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 2006, 38:441–446.CrossRefPubMedGoogle Scholar
  24. 24.
    Henderson J, Northstone K, Lee SP, et al.: The burden of disease associated with filaggrin mutations: a population-based, longitudinal birth cohort study. J Allergy Clin Immunol 2008, 121:872.e9–887.e9.CrossRefGoogle Scholar
  25. 25.
    Brown SJ, Relton CL, Liao H, et al.: Filaggrin null mutations and childhood atopic eczema: a population-based case-control study. J Allergy Clin Immunol 2008, 121:940. e3–946.e3.CrossRefGoogle Scholar
  26. 26.
    Weidinger S, O’sullivan M, Illig T, et al.: Filaggrin mutations, atopic eczema, hay fever, and asthma in children. J Allergy Clin Immunol 2008, 121:1203.e1–1209.e1.CrossRefGoogle Scholar
  27. 27.
    Bisgaard H, Simpson A, Palmer CN, et al.: Gene-environment interaction in the onset of eczema in infancy: filaggrin loss-of-function mutations enhanced by neonatal cat exposure. PLoS Med 2008, 5:e131.CrossRefPubMedGoogle Scholar
  28. 28.
    Kennedy MJ, Loehle JA, Griffin AR, et al.: Association of the histamine N-methyltransferase C314T (Thr105Ile) polymorphism with atopic dermatitis in Caucasian children. Pharmacotherapy 2008, 28:1495–1501.CrossRefPubMedGoogle Scholar
  29. 29.
    Ober C, Tan Z, Sun Y, et al.: Effect of variation in CHI3L1 on serum YKL-40 level, risk of asthma, and lung function. N Engl J Med 2008, 358:1682–1691.CrossRefPubMedGoogle Scholar
  30. 30.
    Laing IA, de Klerk NH, Turner SW, et al.: Cross-sectional and longitudinal association of the secretoglobin 1A1 gene A38G polymorphism with asthma phenotype in the Perth Infant Asthma follow-up cohort. Clin Exp Allergy 2009, 39:62–71.CrossRefPubMedGoogle Scholar
  31. 31.
    Gao J, Lin Y, Qiu C, et al.: Association between HLADQA1, -DQB1 gene polymorphisms and susceptibility to asthma in northern Chinese subjects. Chin Med J (Engl) 2003, 116:1078–1082.Google Scholar
  32. 32.
    Jung JS, Park BL, Cheong HS, et al.: Association of IL17RB gene polymorphism with asthma. Chest 2009, 135:1173–1180.CrossRefPubMedGoogle Scholar

Copyright information

© Current Medicine Group, LLC 2009

Authors and Affiliations

  1. 1.Children’s Mercy Hospital and Clinics Kansas City, Department of Pediatrics, School of MedicineUniversity of Missouri-Kansas CityKansas CityUSA

Personalised recommendations